Генетические следы исторических и доисторических миграций: континенты, регионы, народы. «Люди и их гены»

Доклад на Круглом столе: «Генетика – мост между естественными и гуманитарными науками» V Съезда Вавиловского общества генетиков и селекционеров (Москва, 26.06.2009)

Тема нашего доклада: изучение по генетическим данным миграций людей - как в исторические, так и в доисторические времена .


А тема всего «Круглого стола» – технический осмотр того моста, который генетика строит через пропасть между гуманитарными и естественными науками .


Геногеография - наука уже не молодая, и потому строит этот мост уже более восьмидесяти лет. Основатель геногеографии Александр Сергеевич Серебровский настаивал, что геногеография - наука историческая, а не биологическая. Он считал, что геногеография, используя маркеры генетические, должна описывать историю популяций и пути миграций человека. Сам А.С. Серебровский в качестве генетического маркера использовал фенотипы кур Дагестана – различия между куриными популяциями указывали на различия между генофондами их хозяев, на интенсивность обмена генами (и обмена курами) между разными ущельями Дагестана. Перед Вами схема такого исследования. Пусть в одном ущелье – куры только рыжие, в другом, черные, в третьем - только белые.


В арсенале генетики появились новые мощные маркеры истории популяций - «однородительские» маркеры . Первой завоевала популярность митохондриальная ДНК (мтДНК), передающаяся в поколениях по материнской линии: она позволила убедительно обосновать моноцентристскую теорию происхождения человечества и «выход из Африки» как важнейший этап в расселении по планете человека современного вида. В самый разгар бума исследований мтДНК, когда на ее изучении сосредоточились усилия большинства популяционных генетиков, на сцену стремительно вышла другая генетическая система – Y хромосома, наследующаяся в поколениях по отцовской линии. Хотя ей еще не удалось потеснить мтДНК с позиций лидера, Y хромосома уверенно заняла место рядом с ней. Образовавшийся дуэт стал общепринятым стандартом в мировых исследованиях. В чем же привлекательность этих маркеров? Отсутствие рекомбинации позволяет реконструировать цепочку последовательно происходивших мутаций (от Адама или же от Евы), определить место и время их возникновения, а, следовательно – проследить и процесс расселения человечества по планете.

Поэтому современную геногеографию можно назвать наукой об опечатках . Если бы в генетических текстах не было опечаток - мутаций, то геногеографии было бы нечего изучать: все мужчины обладали бы идентичными Y хромосомами, а женщины – идентичными копиями одной и той же молекулы мтДНК. Мутации служат такими же маркерами, как и ошибки переписчиков летописей - благодаря их ошибкам можно дать относительную датировку разных изводов летописей: те изводы, которые включили и старые «опечатки», и свои собственные, рассматриваются как более поздние.


По генетическим опечаткам можно построить филогенетическое древо происхождения всех современных генетических линий от одной исходной и выявлять древнейшее генетическое родство населения разных континентов. Наиболее древние мутации будут задавать основные, наиболее крупные ветви древа Y хромосомы или мтДНК (гаплогруппы ). Более поздние мутации показывают, как эти ветви ветвятся на более мелкие (субгаплогруппы ). Множество листьев (гаплотипов ) различаются только по самым недавним мутациям и одевают все древо, отражая генетическое разнообразие современного человечества.


Если наложить частоты встречаемости различных мутаций на географическую карту, то мы увидим зоны их скопления – те регионы, в которых волей истории эти опечатки размножились. Чем дольше популяция развивалась в этом регионе, тем больше мутаций она могла накопить. Ее дочерние популяции, отправляясь в путь, захватывали с собой лишь малую часть этого разнообразия. Поэтому мы можем обнаружить и те дочерние регионы, в которые волны миграций занесли те или иные гаплогруппы и гаплотипы . А знание относительного времени возникновения мутаций поможет отделить древние миграции от более поздних.


Так, если мы посмотрим на слайде, а где географически распространен каждый из этих схематичных гаплотипов? Мы видим, что самые древние распространены в Африке (африканская «красная» мутация есть у всех), а далее правая ветвь уходит в Азию (все гаплотипы обладают «синей» азиатской мутацией), а левая (с европейскими «зелеными» мутациями) в Европу . То есть мы восстановили картину самой важной миграции в истории человечества – картину выхода из Африки.

Конечно, это лишь самые основы, «скелет» того инструмента, которым геногеография отслеживает древние и исторические миграции. Понять возможности и ограничения этого инструмента легче на живых примерах геногеографических работ.



Конечно же, невозможно рассказать обо всем разнообразии генетических исследований, изучающих миграции населения. Поэтому, мы ограничились только теми работами, в которых участвовали мы сами в сотрудничестве со многими другими коллегами. Мы наложили еще одно ограничение - работы должны быть свежими – выполненными за последние два года. Получившаяся совокупность работ показана на слайде. Они охватывают обширные времена и пространства: по датам крайние точки различаются в тысячу раз (от 140 000 лет до 140 лет), а по географии – покрывают пространство от Южной Африки до Русского Севера и Памира.

Такая выборка исследований из мировой науки будет почти случайной – и, поскольку мы не отбирали работы, она обрисует Вам не только достоинства, но и возможные недостатки строящегося моста между гуманитарными и естественными науками .



ЮЖНАЯ АФРИКА: НА ЗАРЕ СОВРЕМЕННОГО ЧЕЛОВЕЧЕСТВА .

Первое исследование, о котором мы расскажем, обрисовывает африканскую часть глобального родословного древа мтДНК. В популяциях Южной Африки проведен анализ полных нуклеотидных последовательностей митохондриальной ДНК . Эта трудоемкая работа была необходима для ответа на вопрос – каковы были самые первые этапы микроэволюции Homo sapiens? Главным результатом этой работы стало уточнение филогенетического древа человечества. Укажем две важнейшие черты.

Во-первых , мтДНК утверждает, что 140 000 лет назад произошло разделение древа на два крупных ствола – койсаны - и все остальное человечество. В тезисах следующего доклада (Дыбо, Старостин, 2009) сказано, что и лингвисты противопоставляют койсанские языки языкам остального человечества. Вот и высветился кусочек моста между гуманитариями и генетиками.

Вторая черта – уже известная из более ранних работ, но от того не менее удивительная. Это древо также показывает, что все генетическое разнообразие сосредоточено в Африке, а гаплогруппы всех остальных континентов составляют лишь две тощие веточки на африканском стволе (показаны розовым цветом). Мы видим, что очень немногие африканцы покинули родину, чтобы заселить остальной мир - Евразию, Америку, Австралию. Это древо хорошо иллюстрирует общий принцип отслеживания миграций – расселяющиеся популяции, оторвавшиеся от исходного массива, забирают с собой в путь лишь малую часть ветвей, малую часть имеющегося генетического разнообразия. Дальнейшая микроэволюция приводит к росту новых вторичных субгаплогрупп в разных регионах планеты, позволяя прослеживать все более поздние миграции.



ЮЖНАЯ АФРИКА: ВЕЛИКАНЫ И КАРЛИКИ .

Пропустим половину шкалы времени и окажемся в Центральной Африке на отметке 70 000 лет назад. Когда Луи Квинтано-Мурчи попросил доступа к нашей базе данных для сравнительного анализа, я очень обрадовался, потому что еще в ранней юности читал рассказы Николая Гумилева об этих экваториальных лесах: «Я поставил палатку на каменном склоне, Абиссинских, сбегающих к западу гор, И беспечно смотрел, как пылают закаты, Над зеленою крышей далеких лесов» . Но потом из этих загадочных лесов к Гумилеву вышел умирающий француз, рассказавший о гибели их экспедиции в стране пигмеев-людоедов.

К счастью, экспедиция наших французских коллег была успешнее, и мы изучили генофонды самого низкорослого и самого высокорослого населения планеты - пигмеев и бантуязычных народов Африки. мтДНК утверждает, что 70 тысяч лет назад они были еще единой популяцией. Их разделение было вызвано климатическим кризисом в истории нашей планеты. Ледниковые периоды в истории земли имели для Африки не менее катастрофичные последствия, чем для Европы. Это было время иссушения планеты – исчезали леса, их место занимали саванны и пустыни. Возникла экологическая граница , разделившая предков пигмеев и банту. Прошло много тысяч лет, и обе популяции приобрели своеобразные антропологические черты. Когда же их ареалы вновь перекрылись, поток генов между ними, как показала мтДНК, стал односторонним: лишь мужчины банту брали в жены маленьких женщин пигмеев, приносивших свои гаплогруппы мтДНК. Обратный поток генов не обнаружен - у пигмеев не прослеживаются линии мтДНК бантуязычных народов Африки.



Неолит Европы: палеоДНК древних популяций .

Первая волна заселения Европы связана с палеолитом . Вторая волна - мезолитическая реколонизация Европы после отступления ледника. Но больше всего споров вызывает третья волна – неолитических земледельцев (на слайде слева показано математическое моделирование распространения земледелия в Европе).

В классическом труде археолога Аммермана и генетика Кавалли-Сфорца была сформулирована гипотеза «демического распространения» : именно третья – неолитическая - волна расселения земледельцев сформировала основные черты европейского генофонда. Однако впоследствии данные по мтДНК указали на палеолитический возраст большинства европейских гаплогрупп . Это стало обоснованием альтернативной гипотезы «культурного распространения» : миграцию земледелия без земледельцев. Оба этих подхода реконструировали генофонды былых эпох по генетической структуре их современных популяций-потомков.

Но лишь данные по древней ДНК (полученные в надежных лабораториях и получившие мировое признание) дают прямую информацию о генофонде древних популяций. Исследование палеоДНК одной из первых в Европе неолитической культуры - линейно-ленточной керамики (красный овал на карте слева) - неожиданно выявило высокую частоту гаплогруппы N1a мтДНК , которая у современных европейцев почти не встречается. Это может означать, что первое земледельческое население Европы действительно почти не оставило потомков. Новые данные, полученные той же группой исследователей в соавторстве с нашим коллективом, позволили уточнить этот вывод : они обнаружили ближневосточные корни первых земледельцев Европы. Их миграция шла примерно так, как показывают красные стрелки. Но у большинства современных европейцев совсем другой генофонд. Это значит, что появление земледелия в Европе было связано с миграцией первых земледельцев, которая была немногочисленной, и последующее распространение земледелия внутри Европы носило в основном характер «культурных заимствований» .

Это хотя является своеобразным компромиссом между «демической» и «культурной» гипотезами распространения земледелия: распространение земледелия внутри Европы носило характер «культурной диффузии», но появление земледелия в Европе связано с далекой миграцией первых земледельцев .

Спустя пару тысяч лет пришло время для обратной миграции – из Европы на Ближний Восток. Речь идет о крестовых походах . Как известно, по призыву папы рыцари из большинства западноевропейских государств отправились в Палестину, где их государства просуществовали более ста лет. Вопрос о генетических последствиях этих событий оставался открытым - по историческим данным трудно понять, много ли европейских переселенцев осталось в Леванте. Но геногеография выявила в современном населении Ливана специфический гаплотип (красный кружок). Как видите, на востоке этого гаплотипа больше нигде нет (вокруг – только синие кружки: отсутствие этого гаплотипа). Но он есть на западе (красные кружки), и его география даже повторяет географию стран - участниц крестовых походов: этот гаплотип встречен в генофондах всех стран-участниц (и, конечно же, и за пределами их – это «европейский» гаплотип). Это был пример периода, для которого уже есть письменные источники. Но даже для исторически достоверных миграций остается вопрос - было ли это событие только истории или оно оставило след и в генетике. Есть и события, неизвестные письменной истории. Здесь генетика может сообщить неожиданные факты.




Другое событие, подробнейшим образом освещенное письменной историей, но вокруг которого ведутся жаркие споры. Татаро-монгольское иго одни называют тяжкой катастрофой для восточных славян, а евразийцы считают счастливым случаем рождения российской государственности. Эти вопросы не имеют отношения к генетике, но часто можно услышать мнение, что русский генофонд стал промежуточным между народами Европы и Центральной Азии. А здесь слово уже за генетикой.

Генетические следы пришельцев с востока обнаружить не удается . Эта карта генетических расстояний по мтДНК показывает сугубо европейские корни русского генофонда (синие тона) и чуждость генофондов Центральной Азии (коричневые тона). И к тем же выводам приводит анализ всех других маркеров – от Y хромосомы до изучения зубной системы.



А как насчет обратной миграции, когда спустя несколько столетий уже русские приступили к завоеванию Азии? Генетические различия между коренным населением Кавказа (мажорные гаплогруппы G и J обозначены синим цветом) и восточными славянами (мажорные гаплогруппы R1a и I обозначены красным цветом) очень четкие. Мы изучили две группы казаков Северного Кавказа. Оказалось, что кубанские казаки генетически неотличимы от русских и украинцев. А терское казачество вобрало в себя почти половину местных кавказских гаплотипов (синий цвет). Это тоже пример того когда генетика вносит новую информацию даже для тех событий истории, которые считаются хорошо документированными.


Фамилии – признак лингвистики, и их использование для изучения генофондов – явный мост между двумя науками. Есть четыре способа совмещения фамилий с генетикой, но мы расскажем только о четвертом, возникшем в России за последний год благодаря интересу наших сограждан к их фамилиям. Это проект РГНФ «Однофамильцы или родственники?» . Для групп однофамильцев мы бесплатно проводим анализ их Y хромосом. Если они идентичны, то люди получили и фамилию, и Y хромосому от одного общего предка, а значит, являются родственниками. Если Y хромосомы различны – они друг другу только однофамильцы.

На данный момент проанализировано около четырехсот человек, представляющих шестьдесят фамилий. На этой картинке с нашего сайта видно, что например, двое участников, показанных темно-зеленым цветом, родственники друг другу – они отличаются лишь по одному микросателлиту из семнадцати STR маркеров, а другой участник (светло-зеленый цвет) отличается от них по двум другим STR маркерам.




Покажем на одном примере. Из всех континентов мира подробнее всего изучен генофонд Европы. А в Европе самой простой и хорошо документированной является история генофонда исландцев . Тысячу лет назад этот необитаемый остров колонизировали викинги из Скандинавии. Но они привозили рабов еще и с Британских островов. Вопрос - в какой пропорции соединились эти генофонды . Самый простой вопрос, самый изученный регион, но каждое новое генетическое исследование дает новый ответ. Даны ссылки на 6 работ. Их итоги: от доли Британии 98% - до доли Скандинавии 80% . И представьте себе, что должен подумать специалист-гуманитарий, ознакомившись с этими исследованиями. Поверит ли он еще хоть одному выводу, сделанному генетиками? По нашим наблюдениям, пока верят. Но самые проницательные уже переходят от доверия к скепсису.



Поэтому нужна реконструкция моста – и это третья часть нашего доклада .







Пятая опора – и мы считаем ее одной из главных - участие генетиков и гуманитариев в совместных проектах . Только за последний месяц я участвовал в трех - в Америке, Испании и России.

В проекте «Генография» такие маститые специалисты, как археолог лорд Ренфью, автор классификации языков мира Меррит Рулен и Миив Лики из династии палеоантропологов. Их своевременные консультации порой уберегают нас от… неточностей.

В других проектах общение с гуманитариями дорастает уже до подлинного сотрудничества. Это проект по первоначальному заселению Арктики и Субарктики и проект по неолитизации Европы .

Вторая встреча проходила в Испании. Трехлетний проект направлен на моделирование неолитического заселения Европы. Рабочая группа под руководством Павла Марковича Долуханова включила в основном математиков, археологов, палеогеографов и генетиков. Уже издан том работ коллектива.

Третий проект – в России. Его задача – заселение человеком Севера Евразии . Рабочая группа включила палеогеографов, палеозоологов, палеоботаников, генетиков, антропологов, «датировщиков» и множество археологов их всех регионов страны. Результатом работы станет коллективная монография-Атлас.




Наконец, чисто генетической подпоркой, помогающей усилить надежность выводов, служит полисистемный подход . Например, обнаружив сходство в изменчивости антропологических признаков, классических и ДНК маркеров, можно не сомневаться в объективности долготной закономерности. Об этом подходе мы написали целую книгу (см. монографию «Русский генофонд на русской равнине» ), - но всю ее здесь рассказать мы не успеем.

Важным шагом на этот пути является одновременное использование данных по мтДНК и Y хромосоме : при этом надежными следует признавать только те результаты, которые подтверждены обеими системами.

Однако обе эти системы, с сущности, очень похожи: обе гаплоидны, обе не рекомбинируют, обе анализируются одними и теми же филогеографическими методами, обе наиболее уязвимы для действия дрейфа генов. А это может привести к искажениям реконструируемой картины миграций.

Поэтому следующий шаг – это свидетельства многих очевидцев , то есть расширение спектра анализируемых генетических систем за счет аутосомных ДНК и классических генных маркеров, а также включения информативных квазигенетических систем – фамилий, антропологических, археологических и лингвистических признаков. Когда картины мира – русского, европейского, евразийского – совпадают вопреки тому, что они обрисованы совершенно разными свидетелями (генетикой, антропонимикой, антропологией), мы можем быть уверены, что генетические следы миграций реальны и достоверны.

Использование многих систем – полисистемный подход – открывает путь к реальному синтезу знаний об истории популяций человека, полученных самими разными науками.




Надеемся, что благодаря этим и другим опорам генетический мост станет не только модным, но и надежным местом встречи представителей естественных и гуманитарных наук.

Лаборатория популяционной генетики ГУ МГНЦ РАМН
Genofond.ru

Молекулярно-генетические подходы эффективны не только при изучении глобальных вопросов эволюции человека как ви­да. Большую роль маркеры ДНК играют и при изучении этни­ческой истории в отдельных регионах мира. Один из весьма изученных регионов - это Западная Европа.

В работе Джауме Бертранпетита и его коллег был проведен анализ митохондриальной ДНК из популяций Европы и Ближ­него Востока. Всего было исследовано около 500 человек, среди них - баски, британцы, швейцарцы, тосканцы, сардинцы, бол­гары, турки, жители Ближнего Востока, включавшие бедуинов, палестинцев и йеменских евреев - т. е. народов, относящихся к европеоидам . В данной работе, как и во многих предыдущих, был продемонстрирован низкий уровень генетического разно­образия европейцев, по сравнению с другими, в особенности, африканцами. Это может быть связано с разными причинами: например, с относительно недавним их происхождением, с вы­сокой скоростью миграции, или в связи с быстрым демографи­ческим ростом, который, как полагают, происходил в доледниковый период.

Однако, несмотря на сравнительную гомогенность евро­пейских популяций, имеются определенные географические различия в распределении наблюдаемой генетической вариа­бельности. Это позволило достоверно реконструировать пути миграции народов в далеком прошлом.

Полученные результаты подтвердили предположение о пе­редвижении населения из Ближнего Востока в Европу. Расчеты показа­ли, что эта миграция осуществлялась в течение длительного времени - на протяжении десятков тысячелетий. Данные поз­воляют предположить, что основные генетические характери­стики европейцев, по-видимому, сложились еще в палеолите, тогда как более поздние неолитические миграции оказывали меньшее влияние на изучаемый генофонд.

К аналогичному выводу пришли и другие исследователи, проведя анализ митохондриальных ДНК у более чем 700 чело­век из 14 популяций Европы и Ближнего Востока. Подробный анализ ветвей каждого варианта мтДНК позволил авторам сде­лать следующий вывод: большинст­во населения современной Западной Европы, являет­ся потомками ранних поселенцев, пришедших из районов Бли­жнего Востока в период верхнего палеолита . Обнаружены также «следы» и более поздних продвижений в Европу выход­цев из Ближнего Востока, однако эти миграции оказали значи­тельно меньшее влияние, чем предыдущая.

В последующих работах, выполненных Торони и коллегами, были также исследованы митохондриальные ДНК жителей Ев­ропы, Ближнего Востока и северо-западной Африки. При этом в каждом образце был осуществлен анализ обоих гипервариа­бельных участков, а также полиморфизма вдоль всей молекулы, что позволило определить гаплотип в каждом образце и вы­явить родственные группы гаплотипов, обозначенные как гаплогруппы .

Эти исследования показали, что у европейцев с наибольшей частотой встречаются две родственные гаплогруппы митохондриальной ДНК, обозначенные авторами как Н и V . Подробный анализ этих гаплогрупп, включая их географичес­кое распределение, позволил авторам сделать предположение, что гаплогруппа V является автохтонной (т. е. местной) для Ев­ропы. Она возникла 10-15 тысячелетий назад на севере Иберий­ского полуострова или на юго-западе Франции, затем диффундировала на северо-восток (вплоть до Скандинавии) и на юг до северо-запада Африки.

В настоящее время она с наибольшей частотой встречается у басков и саамов (которые считаются самыми древними жителя­ми Европы), но отсутствует на Кавказе, юге Европы и Ближнем Востоке. Оценка среднего числа нуклеотидных различий от предкового гаплотипа показывает, что иберийские популяции имеют наибольшее разнообразие по данному признаку. Имен­но это позволило сделать вывод, что с большой вероятностью местом возникновения группы V является Иберийский полу­остров и примыкающие к нему территории юго-западной Франции.

Гаплогруппа Н является самой распространенной в Европе, она встречается в разных популяциях с частотой от 20 до 60%, обнаруживая постепенную (клинальную) изменчивость с вос­тока на запад и север. Она обнаруживается с меньшей частотой в других европеоидных популяциях, например, на Ближнем Востоке, в Индии, на севере Африки, в Сибири. Интересно, что наибольшее разнообразие вариантов гаплогруппы Н обнаруже­но в популяциях Ближнего Востока . Это позволяет считать, что она возникла именно в этих популяциях, причем оценка ее воз­раста составляет 25-30 тысячелетий. Однако в Европу она проникла позднее - 15-20 тысячелетий назад, т. е. в период верхнего палеолита .

Таким образом, данная работа выявила множество интерес­ных деталей в генетической истории европейцев, но в целом подтвердила прежние результаты о древности этих популяций (по крайней мере, по женской линии).

Изучение полиморфизма Y -хромосомных маркеров у евро­пейцев также показывает их древнее происхождение. Работа Семино и соавторов так и называется: «Генетическое наследие человека палеолита в ныне живущих европейцах: возможности Y-хромосомных маркеров». В этой работе принимал участие большой интернациональный коллектив, состоящий из двух американских и нескольких европейских лабораторий, вклю­чая российскую. Было изучено более 1000 мужчин из 25 разных регионов Европы и ближнего Востока.

Анализ по 22 маркерам Y-хромосомы показал, что более 95% изученных образцов могут быть сведены к десяти гаплотипам , т. е. к 10 историческим родословным. Из них два гаплотипа, обозначенные как Eu 18 и Eu 19 , появились в Европе в палеолите. Более 50% всех изученных европейских мужчин от­носятся к этим древним гаплотипам. Они являются родствен­ными и отличаются лишь одной точковой заменой (мутация М17), однако их географическое распределение имеет противо­положную направленность. Частота Eu 18 уменьшается с запада на восток, будучи наиболее выраженной у басков. Оценка воз­раста этого гаплотипа составляет примерно 30 тысяч лет, возмо­жно, это самая древняя родословная в Европе. По типу географического распределения она очень напоминает распре­деление митохондриальной гаплогруппы V , также имеющей верхне-палеолитическое происхождение. Можно предполо­жить, что гаплотип Eu 18 Y-хромосомы и гаплотип V митохонд­риальной ДНК являются характеристиками одной и той же древней европейской популяции, проживавшей в верхнем па­леолите в районе Пиренейского полуострова.

Родственный Y-хромосомный гаплотип Eu 19 имеет совсем другое распределение в европейских популяциях. Он отсутству­ет в Западной Европе, его частота увеличивается к востоку и до­стигает максимума в Польше, Венгрии и на Украине, где предыдущий гаплотип Eu 18 практически отсутствует. Самое высокое разнообразие микросателлитных маркеров в составе гаплотипа Eu 19 найдено на Украине . Это позволило сделать предположение, что именно отсюда началась экспансия дан­ной исторической родословной. К сожалению, среди вариантов митохондриальной ДНК пока не найдено такого, который имел бы сходное с Eu 19 географическое распределение.

Как можно объяснить столь различную картину распростра­нения столь родственных гаплотипов? Из данных по распро­странению Eu 18 и Eu 19 можно предположить, что это связано со следующим сценарием. Во время последнего ледникового периода люди вынуждены были покинуть Восточную и Цент­ральную Европу. Часть из них переместилась в Западные обла­сти. Некоторые нашли убежище на Северных Балканах , единственном месте в Центральной Европе, где была возмож­ность существования. Таким образом, ледниковый период лю­ди переживали в 2-х регионах (западная Европа и Северные Балканы), находясь в значительной изоляции друг от друга. Та­кой сценарий подтверждают также данные по флоре и фауне того же периода. Здесь также была выявлена изоляция в указан­ных областях в ледниковый период. После чего наблюдалось распространение переживших видов и популяций из данных заповедных мест.

Дополнительные молекулярно-генетические данные под­тверждают наличие двух очагов, из которых происходило рас­пространение двух рассмотренных гаплотипов.

Среди других Y-хромосомных гаплотипов большая часть имеет географическое распределение, указывающее на их про­исхождение из региона Ближнего Востока. Однако два из них появились в Европе (или, возможно, здесь и возникли) в па­леолите.

Характеристики этих исторических родословных очень на­поминают таковые для гаплогруппы Н митохондриальной ДНК. Возможно, что они маркируют одни и те же исторические события, связанные с расселением ближневосточных популя­ций в Европе в период, предшествующий последнему леднико­вому максимуму.

Все остальные Y-хромосомные гаплотипы появились в Ев­ропе позже. В неолите произошло распространение ряда гапло­типов из региона Ближнего Востока, по мнению многих авторов, в связи с распространением земледельческой культуры.

Интересно, что в работе был выявлен новый вариант Y-хро­мосомы (мутация М178), встречающийся только в северо-вос­точных областях Европы. Возраст этого гаплотипа оценивается величиной, не превышающей 4000 лет, а его распространение может отражать сравнительно недавнюю миграцию уральских популяций.

Таким образом, в данной работе показано, что лишь немно­гим более 20% европейских мужчин относятся к историческим родословным (выявленным с помощью Y-хромосомного поли­морфизма), которые появились в Европе сравнительно недавно - после ледникового периода в неолите. Около 80% мужчин Европы относятся к более древним европейским родословным линиям, нисходящим ко времени верхнего палеолита.

В последнее время активно дискутировалась идея, выска­занная Марком Стоннекингом еще в 1998 году, что более высо­кая вариабельность популяций (особенно европейских) по Х-хромосомным маркерам, в сравнении с митохондриальными, связана с различиями в дистанциях миграций между жен­щинами и мужчинами . Согласно этой идее, миграция мужчин оказывается более ограниченной пространственно , чем мигра­ция женщин. Однако к таким выводам следует относиться с большой осторожностью, так как еще многие популяционные свойства маркеров ДНК, особенно в сравнении одного с дру­гим, мало изучены. Кроме того, большой вклад могут вносить в это явление социально-демографические факторы, напри­мер, такие, как полигамия , имеющаяся или имевшаяся ранее у многих народов.

Тем не менее, необходимо подчеркнуть, что наличие такой возможности, как анализ отдельно и мужской, и женской популяционной истории, открывает новые перспективы в изучении популяций, которых не было ранее, до обнаружения полоспецифических маркеров ДНК, связанных с митохондриальным и Х-хромосомным полиморфизмом.

Изучение популяций американских индейцев и их связи с сибирскими народами также осуществлялось с помощью мар­керов ДНК. Проблема раннего заселения Американского кон­тинента представляет собой одну из наиболее противоречивых тем в исследованиях по эволюции человека. На основании дан­ных антропологии, археологии, лингвистики и генетики при­нято считать, что предки коренного населения Америки при­были из Азии. Однако время, место происхождения и число волн миграции до сих пор являются предметом дискуссий.

Ранее, на основании синтеза мультидисциплинарных исследова­ний было высказано предположение о трех независимых вол­нах миграции предковых азиатских популяций через Берингов пролив . Изучение классических маркеров ДНК выявило тен­денции, которые можно расценивать как подтверждение трехволновой модели миграции.

Однако первые результаты анализа митохондриальной ДНК показали, что их интерпретация может быть значительно шире, в том числе - в поддержку модели с четырьмя волнами мигра­ции. Дальнейший анализ данных по митохондриальной ДНК позволил свести их к одному предположению, что все популя­ции американских индейцев могут быть сведены к единой предковой популяции , проживавшей ранее в регионе Монго­лии и Северного Китая.

Для того чтобы проверить столь противоречивые гипотезы, необходимо было исследовать дополнительные полиморфные системы ДНК. Было проведено исследование 30 вариабельных Y-хромосомных локусов у американских индейцев и несколь­ких сибирских популяций в сравнении с другими регионами мира. Это позволило выявить общих предков коренных жите­лей Америки с популяциями кетов из бассейна реки Енисей и с популяциями алтайцев , населяющих Алтайские горы. Таким образом, было показано преимущественно центрально-сибир­ское происхождение американских индейцев по мужской ли­нии, которые могли мигрировать в Америку в доледниковый период.

Карафет и соавторы исследовали более 2000 мужчин из 60 популяций мира, включая 19 групп американских индейцев и 15 групп аборигенных сибирских народов. В данном исследова­нии было показано, что у американских индейцев имеется не один праотцовский гаплотип, а девять, причем два из них являются исходными, родоначальными гаплотипами Нового Света. Т.е. можно было предполагать по меньшей мере две волны миграции в Новый Свет, причем обе из региона озера Бай­кал, включая Са­янские и Алтайские горы. И, наконец, самые последние данные однозначно показали, что была одна волна миграции из Сибири в Америку 13 тысяч лет назад.

С помощью полиморфных маркеров ДНК были проведены интересные исследования по заселению тихоокеанских архипе­лагов, а также острова Мадагаскар . Существовала точка зрения о переселении людей из Юго- Восточной Азии на тихо­океанские острова. Однако подробный анализ показал, что это был непростой и длительный процесс.

Изучение митохондриальных ДНК в данном регионе пока­зало, что на островах Океании часто встречается (с частотой до 80-90%) специфическая делеция в 9 пар нуклеотидов, в Юго-Восточной Азии она встречается значительно реже. Подробный анализ показал, что данная делеция встречается в разном гене­тическом контексте , т. е. в сочетании с различными полиморф­ными участками. Эти сочетания принято называть мотивами , причем различают меланезийский, полинезийский и мотив Юго-Восточной Азии . Все представленные данные позволили предположить, что население островов Меланезии и Юго-Восто­чной Азии (Индонезия) в древности не смешивалось. Восточная Полинезия заселялась из обоих этих регионов очень малыми группами, что привело к формированию смешанного генофонда этих островов.

Интересной работой является исследо­вание населения Мадагаскара , проводимое в течение многих лет Химлой Содиал и коллегами. История и время заселения этого острова остаются неизвестными из-за отсутствия пись­менных свидетельств. Немногочисленные археологические данные указывают, что первые поселенцы явились выходцами предположительно из Индонезии (находки датируются нача­лом первого тысячелетия нашей эры), позднее датируется вол­на заселения из Африки. От Африки Мадагаскар отделен проливом шириной 400 км, расстояние до Индонезии - 6400 км. Население острова составляет 11 млн человек и подразделено на 18 этнических групп. В диалектах имеются особенности, указывающие на арабское и африкан­ское влияние.

Изучение митохондриальной ДНК у населения Мадагаскара обнаружило высокую частоту специфической делеции разме­ром 9 пар нуклеотидов, находящейся в окружении полиморф­ных участков, называемых полинезийским мотивом . Этот результат можно объяснить тем, что первые поселенцы Мадага­скара, по-видимому, были мореплавателями и прибыли из Полинезии или относились к той популяции, выходцы из которой заселяли Полинезию, но их путь в Мадагаскар проходил через Индонезию . То, что эти дан­ные получены при анализе митохондриальной ДНК, говорит о том, что в составе прибывших на Мадагаскар групп имелись женщины.

Изучение Y-хромосомного полиморфизма у мужчин Мада­гаскара показало следующую картину. Большая часть (более чем 2/3) современных родословных линий относится к афри­канскому типу и только 15% - к вариантам из Юго-Восточной Азии. Это говорит о том, что переселение из Африки, которое могло происходить как одновременно, так и в более позднее время, чем азиатское, осуществлялось бо́льшим числом людей. Было показано, что обе линии переселенцев, как африканских, так и азиатских, пережили период резкого снижения численно­сти, возможно из-за каких-то внешних воздействий (природ­ные аномалии, эпидемии чумы или что-то еще).

Очень интересное исследование, которое осуществляется несколькими интернациональными группами, ведется в Ин­дии . Известна высокая подразделенность индийского общест­ва, в том числе кастовая . Изучение митохондриальной ДНК и Y-хромосомного полиморфизма у представителей различных каст и племен выявило много любопытных деталей. Женское население Индии, как показывает данное исследование, выгля­дит более или менее гомогенным. Более 60% жителей Индии имеют варианты митохондриальной ДНК, относящиеся к древ­ней группе ранней (возможно, первой) волне миграции из Вос­точной Африки , осуществлявшейся примерно 60 тыс. лет назад. В то же время в некоторых районах Индии в высших кастах со­держание вариантов митохондриальной ДНК, сходных с евро­пейскими , выше, по сравнению с низшими кастами.

Что касается Y-хромосомного анализа, то здесь выявлены более четкие корреляции с кастовой принадлежностью. Чем выше ранг касты, тем выше содержание вариантов, сходных с европейскими, причем, что особенно интересно, с восточноев­ропейскими. Это является подтверждением точки зрения некото­рых археологов, что прародина завоевателей Индии - индо-ариев , основавших высшие касты, находится на юге Восточной Европы.

Удивительные результаты были получены совсем недавно интернациональной группой под руководством английского исследователя Криса Тайлер-Смита . Проводилось широкомас­штабное изучение Y-хромосомного полиморфизма во множе­стве азиатских популяций: в Японии, Корее, Монголии, Китае, в государствах Средней Азии, в Пакистане, Афганистане и на Южном Кавказе. В 16 популяциях из довольно обширного ази­атского региона, простирающегося от Тихого океана до Кас­пийского моря, достаточно часто встречалась одна и та же генетическая линия Y-хромосомы. В среднем по данному ре­гиону эта линия встречается у 8% мужчин. Это составляет 0,5% всего мужского населения Земли. В некоторых районах внут­ренней Монголии, Центральной и Средней Азии данная линия встречается с частотой от 15 до 30%.

Расчеты показывают, что эта линия Y-хромосомы произош­ла в Монголии примерно 1000 лет назад (в интервале 700-1300 лет) и быстро распространилась по указанной территории. Та­кое явление не могло произойти случайно. Если бы причиной была миграция некой популяции, то исследователи должны были обнаружить несколько таких линий. Проанализировав географию распространения и время возникновения данной ге­нетической линии, авторы сделали сенсационное предположе­ние, что этот генетический вариант принадлежит Чингисхану и его ближайшим родственникам по мужской линии. В пределах обозначенного времени на данной территории действительно существовала империя именно этого завоевателя. Известно, что сам Чингисхан и его ближайшие родственники имели мно­го потомков, которые сохраняли свое престижное положение на протяжении длительного времени. Таким образом, здесь происходил отбор не вследствие биологического преимущест­ва, а по социальным причинам, что представляет собой новое явление в генетике.

Из приведенных примеров изучения популяций различных регионов мира видно, что маркеры ДНК дают новое понимание многих аспектов эволюции человека, как не­давних, так и отдаленных.

ГЕНЕТИКА ЧЕЛОВЕКА (демографические аспекты), раздел генетики, изучающий явления наследственности и изменчивости у человека. Материальной основой наследственности у человека, как и у других организмов, являются гены, расположенные в хромосомах и передающиеся в поколениях с помощью половых клеток. Каждый из генов представлен в организме дважды - один получен от отца, другой - от матери. В зависимости от различия или тождества унаследованных генов человек соответственно гетерозиготен (т.е. отцовский и материнский гены в данной паре не одинаковы) или гомозиготен (отцовский и материнский гены в данной паре одинаковы). Вероятность гомозиготности по совокупности генов из-за большого их числа (по разным оценкам, 105-106) крайне мала. Доля генов в гомозиготном состоянии у человека возрастает, если его родители имеют общих предков, от которых унаследовали идентичные гены. Такие случаи, регулируясь в человеческом обществе брачными традициями и законами, встречаются сравнительно редко, и, как правило, индивидуальный набор генов - генотип - формируется сочетанием родительских генов, происходящих из разных частей генофонда - общей совокупности генов популяции. Индивидуальное разнообразие набора генов огромно и образует биол. фундамент уникальности и неповторимости человеческой личности.

Один из важнейших разделов генетики человека - популяционная генетика человека. В отличие от популяций других видов популяция человека - объект действия и продукт не только естественно-исторического, но и общественно-исторического процесса. Воспроизводство генов человека, будучи, с одной стороны, сугубо биологическим процессом, с другой - социально обусловлено и неотделимо от демографического развития и воспроизводства народонаселения. Передача генетической информации в поколениях, ее распределение в пространстве расселения населения, изменение в ходе миграций, переселений, взаимодействий населения с окружающей средой - все эти движения генетического материала у человека связаны с демографическими процессами. Таким образом, популяционную генетику человека можно рассматривать как демографическую генетику, т. е. область взаимодействия генетики и демографии, исследующую генетические последствия демографических процессов.

Генофонд популяции, представленный в каждом поколении разнообразными генотипами, не остается постоянным во времени, т. к. благодаря дифференциальной рождаемости, смертности и миграции носители генов одного поколения в разной степени передают свои гены новым поколениям. Изменение популяционного генофонда, вызванное неодинаковым участием носителей разных генов в процессе воспроизводства, считается в общей теории популяционной генетики основным проявлением естественного отбора, который меняет структуру генофонда в сторону большего соответствия условиям среды. Другими факторами, действующими на изменения генофонда в популяциях человека, являются мутации, миграции и дрейф генов. Мерилом биологически нормальной, естественной скорости изменения генофонда является темп естественного мутационного процесса. Эффекту мутаций собственных генов генофонда эквивалентен эффект миграций генов из других популяций с существенно иным генофондом, т. к. при этом также возникают новые, ранее несвойственные популяции генотипы. Другое последствие регулярных миграций генов - стирание генетических различий между популяциями, потеря ими генетического своеобразия, возникшего в ходе самостоятельного развития и специфического приспособления к локальным условиям среды. Миграция генов осуществляется через миграцию их носителей. Роль миграции в истории развития народонаселения едва ли поддается однозначной оценке и трактовке, но некоторые ее генетические последствия очевидны, ибо значительная часть современного мирового населения представлена генетически смешанными популяциями. В несколько ином плане та же проблема возникает в связи с процессом урбанизации, вызывающим отлив населения из различных местных популяций и его прилив в центры урбанизации.

Даже в отсутствии мутаций, отбора, миграций генов (что почти невероятно) генофонд популяции все же сохраняет возможность изменяться. Происходит это в силу так называемого дрейфа генов, или генетико-автоматического процесса, - такого изменения генетической структуры популяции, которое вызывается случайными причинами, например, малыми размерами популяции. Дрейф генов наблюдается в численно небольших и преимущественно эндогамных популяциях - изолятах, где имеет место значительное несоответствие между потенциально всегда большим разнообразием возможных генотипов и малым числом реальных носителей генов. В силу малочисленности популяции в каждом поколении реализуется лишь малая часть возможных генотипов, и формирование генофонда нового поколения приобретает характер случайного выбора ограниченного числа генов из родительского генофонда. Популяционная генетика трактует дрейф генов как процесс, не зависящий от состояния среды. Вместе с тем именно на примере малых замкнутых популяций человека можно увидеть, что численность популяции определенным образом связана с уровнем общественно-экономического и культурного развития, а также с характером взаимодействия популяции со средой обитания. Таким образом, дрейф генов, зависящий от размера популяции, оказывается зависимым и от состояния общественной и природной среды.

Различные генетические процессы, рассмотренные выше порознь, в реальных популяциях представляют взаимосвязанные компоненты единого генетического процесса.

Основным источником информации о генетических процессах в населении является генетический полиморфизм, т. е. одновременное присутствие в популяции двух и более форм одного и того же наследственного признака или свойства. Он исследуется с помощью генетических маркеров - наследственных признаков, свидетельствующих о присутствии в генотипе человека тех или иных генов, обусловливающих эти признаки. Соответственно применяются разнообразные экспериментальные методы изучения генетических маркеров как источников информации о генотипах людей и генофондах популяций. Важную информацию о степени замкнутости и своеобразии генофонда в эндогамных популяциях, об уровне наследств, полиморфизма и т. п. позволяет получить генеалогия популяции, а также архивные и текущие записи актов гражданского состояния. Источником информации в генетике человека служат и такие сведения о населении, как его численность, брачность, семейная структура, рождаемость, смертность, расселение и пространств, структура, миграции. Гены, носителями которых являются современные поколения, дошли до них из глубокого прошлого, и поэтому генетика человека использует также данные археологии, этнографии и истории.

Генетические аспекты численности и демографической структуры населения . Население мира в целом, как и население, слагающее отдельные этносы, имеет сложную иерархическую популяционную структуру. В основании этой иерархии находятся элементарные популяции - простейшие единицы всей популяционной системы человечества. На нижнем уровне этой системы преобладают популяции сельского типа с численностью от десятков и сотен до тысяч человек. К этому же уровню относят и городские популяции с численностью от тысяч до миллионов человек. При различной численности и сельские, и городские популяции однотипны с том отношении, что лишены постоянных внутрипопуляционных барьеров, которые расчленяли бы их генофонд на относительно независимые и устойчиво воспроизводящиеся в поколениях части (в больших городах капиталистических стран в значительной степени сохраняется расчлененность генофонда в силу расовых, национальных, кастовых, религиозных и других различий). Число генов какого-либо типа в генофонде элементарной популяции вдвое больше числа составляющих ее людей. Однако с формированием генофонда следующего поколения связана лишь часть генов, носители которых - люди репродуктивного возраста. Из них не все вступают в брак, а из вступивших не все имеют детей или имеют разное их число и, наконец, не все дети доживают до репродуктивного возраста. Это означает, что даже гены, образующие ту часть генофонда, которая обеспечивает его воспроизводство, воспроизводят себя в разном числе копий. Чем меньшая часть генов родительского поколения воспроизвела себя в большем числе копий, тем больше генетические различия между поколениями популяции. В связи с этим генетически значимой является не общая численность популяции, а ее т. н. генетически эффективная численность - параметр, учитывающий все составляющие процесса воспроизводства - неравное соотношение полов, их неравную плодовитость, репродуктивную активность, ее продолжительность, различную в разных семьях выживаемость детей.

Отношение генетически эффективной численности к общей численности популяции зависит не только от биологических, но и от социальных факторов. В популяциях сельского типа это отношение составляет обычно около 1/3. В городских популяциях под выравнивающим влиянием социальной среды на репродуктивные показатели семей доля генетически эффективной численности может резко возрастать даже при сокращении воспроизводства и общего размера популяции. Размер популяции в свою очередь влияет на скорость генетических изменений в популяции: чем он численно больше, тем медленнее изменяется генетическая структура популяции. Поэтому там, где население состоит из большого числа элементарных популяций, наблюдаются значительные генетические различия между ними.

Генетические аспекты брачности . Многие моменты математического моделирования генетических процессов в популяциях связаны с принципом панмиксни (полной случайности образования брачных пар). В популяциях человека этот принцип реализуется с большими ограничениями. Общество, запрещая или поощряя, в зависимости от традиций и законов, родственные браки, регулирует степень панмиксии и воздействует на генетический процесс. В разных общественно-экономических и историко-культурных условиях различна и широта брачного круга, а следовательно, и уровень генетического разнообразия в нем. Ориентируясь, хотя бы частично, на психофизиологические (темперамент и т. д.), морфологические (тип телосложения, расовые особенности) и др. свойства, прямо или косвенно связанные с генотипом, человек тем самым производит неслучайный выбор из окружающего его разнообразия генотипов. Наибольшая избирательность наблюдается при близкородственных браках - инбридинге. Особенно высока его частота в изолятах, где преобладают внутренние (эндогамные) браки (их частота достигает почти 100%). В этом случае сама традиция эндогамии, несмотря на запрещение явно родственных браков, неминуемо порождает инбридинг. Чем меньше генетически эффективная численность изолята, тем с течением времени все более родственными становятся браки, и все более увеличивается генетическая однородность популяции. Уровень наследственного полиморфизма в таком изоляте сокращается, и популяция оказывается высокоадаптированной к узкому диапазону условий окружающей среды. Известны случаи, когда популяции, оказавшись на исторических окраинах мира и утратив в условиях изоляции некоторую долю наследственного полиморфизма (в частности, иммунологического), при контакте с пришлыми группами населения ценой больших потерь адаптировались к изменившейся эпидемиологической обстановке.

Широта брачного круга может сказываться и на таких признаках потомства, которые лишь частично определяются генотипом. С широтой брачного круга, т. е. с уровнем генетических различий родителей, до определенной степени связаны показатели физического развития детей, выносливости, устойчивости к стрессу, трудоспособности. В уровне этих различий, судя по влиянию на потомство, существует свой оптимум, означающий существование оптимума и в размерах круга брачных связей.

Генетические аспекты семейной структуры . Главный метод изучения закономерностей наследственной передачи признаков у человека - анализ распределения признаков у членов семьи в зависимости от степени их родства. Если признак, будучи генетическим маркером, не влияет на подбор супружеских пар, то доля родительских пар с определенным сочетанием маркирующих признаков обусловлена только частотой, с которой распространены в населении гены, кодирующие эти признаки. Например, группы крови человека, обозначаемые символами О(I), А(II), В(III) и AB(IV), кодируются тремя аллельными генами О, А и В. Распространение этих трех генов в мировом населении изучено особенно хорошо в силу их значимости для службы переливания крови. Семейная структура населения локальной ли популяции, народа, страны или мира в целом в отношении признака групп крови представлена 16 генетически различными типами супружеских пар. Частота каждого из этих типов всецело зависит от частоты трех аллельных генов А, В и О. Так, зная, что в Западной Европе эти гены представлены в генофонде в соотношении 26% (А), 6% (В), 68% (О), а в Южной и Восточной Азии в соотношении 20% (А), 20% (В) и 60% (О), можно заранее предсказать, что семья, где, например, мать группы крови О(I) и отец группы крови А (II), в Западной Европе составляют ок. 20%, а в Южной и Восточной Азии - около 10% всех супружеских пар. В семьях с супружескими парами этого типа часты случаи патологии повторных и многократных беременностей и родов на почве иммуногенетической несовместимости родителей. Социально значимые аспекты одного этого факта проявления генетических закономерностей в семейной структуре населения очевидны, Таким образом, существует связь между частотой, с которой гены представлены в генофонде населения, частотами генотипов людей и частотами генетически различных типов семей, передающих в следующее поколение определенную долю генов генофонда. Величина помех в передаче генетической информации в поколениях обратно пропорциональна числу детей в семьях и прямо пропорциональна степени различий семей по числу детей.

Родство в семье имеет определенную генетическую меру, определяющую долю общих генов у любых двух членов семьи, связанных общностью (даже отдаленной) происхождения. Наиболее распространенные типы родства могут быть выражены долей генов, унаследованных от общего предка. Это имеет значение в вопросах регулирования браков, в случае наследств, заболеваний и при медико-генетическом консультировании относительно риска заболевания, отмеченного в семье.

Генетические аспекты рождаемости . Индивидуальное развитие (онтогенез) человека находится под генетическим контролем, в наибольшей мере проявляющимся в ранние фазы - от образования зиготы (оплодотворенной яйцеклетки) до рождения и раннего детства. Такой контроль наиболее ясно выступает в явлении генетического определения (детерминации) пола системой двух так называемых половых хромосом (одной, полученной от отца, другой - от матери). Генетическая детерминация пола происходит в момент слияния родительских половых клеток и зависит от того, в каком сочетании половые хромосомы родителей оказались в новой зиготе. Генетически контролируется также взаимодействие плода с материнским организмом. По оценкам, не менее 10% всех зачатий оканчивается спонтанными абортами, обусловленными генетической несовместимостью матери и плода. Менее выраженная генетическая несовместимость сказывается в осложненном протекании беременности и родов. Наиболее известный пример проявления генетических факторов в беременности и рождаемости - резус-несовместимость матери и плода, а значит и супругов, возникающая в силу полиморфизма генов, контролирующих резус-группы крови. Этот вид генетической несовместимости особенно част в населении Европы, Неравная плодовитость различных генотипов способна в ряду поколений изменить генофонд путем преимущественного распространения одних и убыли других генов.

Генетические аспекты смертности . Одни гены, унаследованные человеком от родителей, функционируют на протяжении всей жизни, другие - лишь на определенном этапе онтогенеза, третьи, присутствуя в генотипе, могут так и не проявиться в фенотипе. Хотя все гены не меняются в течение жизни организма, в разных возрастных группах населения наблюдаются различия в частоте разных генотипов. Причина этого в неодинаковой выживаемости индивидуальных генотипов. Она наиболее очевидна, когда организм оказывается носителем так называемых летальных генов, приводящих к его гибели. В других случаях определенные генотипические комбинации в определенной среде в той или иной мере снижают жизнеспособность и тем самым влияют на индивидуальную продолжительность жизни. В популяциях, существующих в стабильной среде, повышенная смертность отдельных генотипов компенсируется их повышенной плодовитостью и, таким образом, не затрагивает генетических различий между поколениями. В иных условиях изменение частоты генотипов в популяции отражает направление ее генетической адаптации к изменениям окружающей среды. В человеческом обществе, прилагающем максимум усилий в борьбе со смертностью, генетические причины смертности в наибольшей мере сказываются на начальных этапах онтогенеза.

Причиной неодинаковой выживаемости генотипов является также различная степень устойчивости и подверженности людей заболеваниям, хотя преимущество одних генотипов перед другими в этом отношении не является ни абсолютным, ни постоянным. Неравная жизнеспособность разных генотипов - один из механизмов, поддерживающий наследственный полиморфизм в популяциях человека, причем величина различий в степени жизнеспособности обычно порядка одного - нескольких %. В некоторых случаях (при появлении в среде патогенного фактора) соотношение в выживаемости генотипов достигает десятков %. Наиболее известный пример такого рода связан с серповидно-клеточной анемией - болезнью, первопричина которой в мутации одного из генов, кодирующих синтез гемоглобина. Если у какого-либо индивида в обеих гомологичных хромосомах присутствует мутантный ген (HbS), то такой индивид страдает тяжелой анемией и, как правило, не доживает до зрелости. Таким образом, при генотипе HbS HbS весь гемоглобин принадлежит к аномальному типу и разница в выживании такого генотипа по сравнению с нормальным НbA НbA составляет практически 100%. Однако в условиях тропической Африки и субтропического Средиземноморья разница в выживании меньше 100% в силу низкой устойчивости нормального генотипа НbA НbA к поражению малярийным плазмодием, для развития которого аномальный гемоглобин представляет менее подходящую среду, чем нормальный. Наиболее жизнестойки индивиды с генотипом HbA HbS, у которых ген НbA обеспечивает образование нормального гемоглобина, а ген HbS защищает от поражения малярийным плазмодием.

Генетические аспекты воспроизводства населения . В понятиях генетики человека воспроизводство населения есть воспроизводство генов человека в ходе смены поколений. Генетически ключевыми единицами в воспроизводстве населения являются элементарные популяции, дифференцированный рост которых в ходе воспроизводства ведет к неодинаковому распространению в населении генов из того или иного генофонда. Поскольку элементарные популяции человека не существуют вне этносов, в их неравном воспроизводстве отражено неравное же воспроизводство этнических генофондов, необратимо меняющее генетические свойства населения, что сказывается не только в постепенном изменении физического облика поколений, но и в нарушении устойчивости к патогенным факторам среды. Генетически значимая единица времени в воспроизводстве - поколение. В воспроизводстве генов нового поколения участвуют обычно 2 из 3-4 одновременно сосуществующих поколений, что сокращает возможность резких изменений в генетической структуре нового поколения и обеспечивает большую генетическую преемственность между поколениями. Охрана генетических механизмов воспроизводства - ключевое условие поддержания нормального физического состояния поколений. Посредством воспроизводства населения из отдаленного прошлого в настоящее и будущее передаются древние гены, обусловливающие физическое и психическое единство и целостность человечества во всем его многообразии. Воспроизводством могут быть подхвачены и новые гены, возникающие в результате мутаций. Систематический контроль за частотой генных мутаций - один им методов оценки генетического состояния среды и нормального хода воспроизводства.

Генетические аспекты миграции и расселения населения . Миграция населения приводит к миграции генов человека. Миграция генов в популяцию, изменяя генофонд, формируя новые генотипы, меняя установившиеся в поколениях соотношения приспособлеyнностей генотипов, усиливая дифференциальную плодовитость и выживаемость, выступает как фактор, воздействующий на течение генетического процесса в популяции. Различают интенсивность и генетическая эффективность миграции. При одинаковой интенсивности генетическая эффективность миграции тем больше, чем больше генетическое своеобразие популяций, обменивающихся генами, а генетическое своеобразие тем больше, чем больше размерностей у пространства, в котором происходит миграция. Социальная природа человека способствует увеличению числа размерностей миграционного пространства свыше двух - трех, свойственных популяциям других организмов, однако она же создает условия и стимулы к преодолению этого пространства, разделяющего популяции. Негритянское гетто Нью-Йорка, азиатские кварталы Сан-Франциско, Ист-Энд и Уэст-Энд Лондона, Замоскворечье и Белый город дореволюционной Москвы - все это не столько территориально, сколько социально разобщенные пространства, в которых происходят миграции генов, часто однонаправленные (например, от белых американцев к черным, но почти никогда - обратно). Преодоление такого пространства оказывается часто более трудным, чем преодоление географических расстояний. Когда миграция перестает зависеть от любого рода расстояний между популяциями, ее влияние, нивелирующее генетическое разнообразие популяций, становится максимальным. В популяциях, генетическое развитие в которых протекает по стационарному типу, миграция выступает в качестве фактора, регулирующего уровень генетического разнообразия, необходимый для поддержания адаптационной пластичности населения в изменяющейся окружающей среде. Этот уровень оказывается единым для коренного населения разных континентов и указывает на то, что в ходе истории был выработан оптимальный режим для всех генетических процессов в населении. Такой режим обеспечивает распределение всего эволюционно накопленного генетического разнообразия населения на внутрипопуляционные и межпопуляционные компоненты примерно в соотношении 90% а 10%. Такое же соотношение обнаружено в различных популяциях животных и растений, что подчеркивает его уникальную эволюционную важность для выживания. Соотношение внутри- и межпопуляционного генетического разнообразия легко вычисляется из демографических данных о миграции и численности населения. Поэтому эти данные могут служить для генетической оптимизации миграции населения и демографических процессов в целом.

В череде поколений относительно изолированного автохтонного развития генофонд каждой популяции и каждой группы мирового населения приобретает отличительные черты. Так сложились, например, существенно разные генофонды населения на территории СССР к 3ападу и Востоку от Урала, проявляющиеся даже в антропологических типах. Вместе с тем генофонд коренного населения обширного района между Волгой и Обью являет промежуточные черты, сложившиеся в результате длившегося тысячелетиями просачивания и миграций генов между европейскими и азиатскими частями общего генофонда древнего населения нашей страны. В эпоху Великого переселения народов миграция масс населения центрально-азиатского и южно-сибирского происхождения привела к широкому распространению генов из азиатского генофонда среди населения Европейской части СССР и Европы в целом. Последствия этих миграционных процессов древности до сих пор отражены в геногеографии населения Северной Евразии. Считается, что вызванная этими миграциями перестройка генофонда населения Европы сопровождалась изменением адаптационных свойств генотипов людей. Это проявилось, в частности, в распространении в населении Европы резус-несовместимости матери и плода, которая не встречается в Азии и очень редка на крайнем 3ападе Европы у басков. Одно лишь это «эхо» древних демографических процессов, нарушивших естественный ход и направление генетического развития населения Европы, требует сегодня особых профилактических мероприятий по охране материнства и детства. В геногеографии мирового населения отражены и многие другие события мировой демографической истории.

Обращенная в будущее, генетика человека дает ключ к пониманию и оценке возможных отдаленных генетических последствий современных демографических процессов.

Ю.Г. Рычков.

Демографический энциклопедический словарь. - М.: Советская энциклопедия. Главный редактор Д.И. Валентей. 1985.

Литература:

Ниль Дж., Шэлл У., Наследственность человека, пер. с англ. М. 1958; Штерн К, Основы генетики человека, пер. с англ., М. 1965; Маккьюсик В., Генетика человека, пер. с англ., М. 1967; Бочков Н. П, Генетика человека, М. 1978; Л и Ч., Введение в популяц. генетику, пер. с англ., М. 1978; Беляев Д. К., Совр. наука и проблемы исследования человека, «Вопросы философии», 1981, № 3.

Sforza L. L., Воrimer W. F., The genetics of human populations, S. F., 1977.

Откуда произошли русские? Кто был нашим предком? Что общего у русских и украинцев? Долгое время ответы на эти вопросы могли быть только умозрительными. Пока за дело не взялись генетики.

Адам и Ева

Изучением корней занимается популяционная генетика. Она базируется на показателях наследственности и изменчивости. Генетики обнаружили, что все современное человечество восходит к одной женщине, которую ученые именуют Митохондриальной Евой. Она жила в Африке более 200 тысяч лет назад.

У всех нас в геноме одинаковая митохондрия – набор из 25 генов. Он передаются только по материнской линии.

При этом Y-хромосома у всех нынешних мужчин также возводится к одному мужчине, прозванном Адамом, в честь библейского первого человека. Понятно, что речь идет всего лишь о ближайших общих предках всех ныне живущих людей, их гены дошли до нас в результате генетического дрейфа. Стоит заметить, что жили они в разное время – Адам, от которого все современные представители мужского пола получили свою Y-хромосому, был на 150 тысяч лет моложе Евы.

Конечно, этих людей с большой натяжкой можно назвать нашими «предками», так как из тридцати тысяч генов, которыми обладает человек, от них у нас всего лишь 25 генов и Y-хромосома. Популяция увеличивалась, остальные люди мешались с генами их современников, видоизменялись, мутировали в ходе миграций и условий, в которых люди жили. В итоге мы получили разные геномы разных образовавшихся впоследствии народов.

Гаплогруппы

Именно благодаря генетическим мутациям мы можем определить процесс расселения человечества, а также генетические гаплогруппы (общности людей со схожими гаплотипами, имеющими общего предка, у которого в обоих гаплотипах имела место одна и та же мутация), свойственные той или иной нации.

У каждого народа – свой набор гаплогрупп, которые иногда бывают схожи. Благодаря этому мы можем определить, чья кровь течет в нас, и кто является нашими ближайшими генетическими родственниками.

Согласно исследованию 2008 года, проведенному российскими и эстонскими генетиками, русский этнос генетически состоит из двух основных частей: жители Южной и Центральной России ближе к другим народам, говорящим на славянских языках, а коренные северяне – к финно-уграм. Разумеется, речь идет о представителях русского народа. Удивительно, но гена, присущего азиатам, в том числе и монголо-татарам, в нас практически нет. Так что знаменитая поговорка: «Поскреби русского, найдешь татарина» в корне неверна. Причем, на татарском народе азиатский ген также не особо отразился, генофонд современных татар оказался по большей части европейским.

В целом, если исходить из результатов исследования, в крови русского народа практически нет примеси из Азии, из-за Урала, зато в пределах Европы наши предки испытывали многочисленные генетические влияния своих соседей, будь то поляки, финно-угры, народы Северного Кавказа или этнос татар (не монголов). Кстати, гаплогруппа R1a, характерная для славян, по некоторым версиям, родилась тысячи лет назад и была частой у предков скифов. Часть этих праскифов жила в Средней Азии, часть перекочевала в Причерноморье. Оттуда эти гены дошли до славян.

Прародина

Когда-то славянские народы жили на одной территории. Оттуда уже они разбрелись по свету, воюя и смешиваясь с их коренным населением. Поэтому население нынешних государств, в основе которых лежит славянский этнос, различаются не только по культурным и языковым признакам, но и генетически. Чем дальше они географически друг от друга, тем больше различий. Так у западных славян нашлись общие гены с кельтским населением (гаплогруппа R1b), у балканских – с греками (гаплогруппа I2) и древними фракийцами (I2а2), у восточных – с балтами и финно-уграми (гаплогруппа N). Причем, межэтнический контакт последних происходил за счет славянских мужчин, которые женились на аборигенках.

Несмотря на многочисленные различия и неоднородность генофонда, русские, украинцы, поляки и белорусы четко соответствуют одной группе на так называемой диаграмме MDS, отражающей генетическую дистанцию. Из всех народов мы ближе всего друг к другу.

Генетический анализ позволяет найти упомянутую выше «прародину, где все начиналось». Это возможно благодаря тому, что каждая миграция племен сопровождается генетическими мутациями, которые все больше и больше искажали изначальный набор генов. Так что, исходя из генетической близости, можно определить и изначальную территориальную.

Например, по геному, поляки ближе к украинцам, чем к русским. Русские близки с южными белорусами и к восточным украинцам, но далеки от словаков и поляков. И так далее. Это позволило ученым сделать вывод, что первоначальная территория славян была, примерно посередине нынешнего ареала расселения их потомков. Условно, территория сформировавшейся впоследствии Киевской Руси. Археологически это подтверждается развитием пражско-корчакской археологической культуры V-VI веков. Оттуда уже пошли южные, западные и северные волны расселения славян.

Генетика и менталитет

Казалось бы, раз известен генофонд, легко понять, откуда берется народный менталитет. На самом деле, нет. По словам Олега Балановского, сотрудника лаборатории популяционной генетики РАМН, между национальным характером и генофондом нет никакой связи. Это уже «исторически сложившиеся обстоятельства» и культурное влияние.

Грубо говоря, если новорожденного младенца из русского села со славянским генофондом увезти сразу в Китай и воспитать в китайских обычаях, в культурном плане он будет типичным китайцем. Но, что касается внешности, иммунитета к местным заболеваниям, все останется славянским.

ДНК-генеалогия

Наряду с популяционной генеалогией, сегодня появляются и развиваются частные направления по изучению генома народов и их происхождения. Некоторые из них относят к псевдо-наукам. Так, например, русско-американский биохимик Анатолий Клесов изобрел, так называемую, ДНК-генеалогию, которая, по словам ее создателя, «наука практически историческая, создаваемая на базе математического аппарата химической и биологической кинетики». Проще говоря, это новое направление пытается изучать историю и временные рамки существования тех или иных родов и племен на основе мутаций в мужских Y-хромосомах.

Основными постулатами ДНК-генеалогии стали: гипотеза о неафриканском происхождении Homo sapiens (что противоречит выводам популяционной генетики), критика норманнской теории, а также удлинение истории славянских племен, которых Анатолий Клесов считает потомками древних ариев.

Откуда такие выводы? Все от упомянутой уже гаплогруппы R1А, которая является самой распространенной у славян.

Естественно, подобный подход породил море критики, как со стороны историков, так и со стороны генетиков. В исторической науке говорить о славянах-ариях не принято, поскольку материальная культура (основной источник в данном вопросе) не позволяет определить преемственность славянской культуры от народов Древней Индии и Ирана. Генетики и вовсе возражают против ассоциации гаплогрупп с этническими признаками.

Доктор исторических наук Лев Клейн подчеркивает, что «Гаплогруппы - это не народы и не языки, и давать им этнические клички - опасная и недостойная игра. Какими бы патриотическими намерениями и восклицаниями она ни прикрывалась». По словам Клейна, выводы Анатолия Клесова о славянах-ариях сделали его изгоем в научном мире. О том, как дальше будет развиваться дискуссия вокруг новозаявленной науки Клесова и вопроса о древнем происхождении славян, пока что остается только гадать.

0,1%

Несмотря на то, что ДНК всех людей и народов различны и в природе нет ни одного тождественного другому человека, с генетической точки зрения мы все чрезвычайно похожи. Все различия в наших генах, которые дали нам разный цвет кожи и разрез глаз, по словам отечественного генетика Льва Житовского, составляют всего 0,1% от нашего ДНК. На остальные 99,9% мы генетически одинаковы. Как ни парадоксально, но если сопоставить различных представителей человеческих рас и ближайших наших родственников шимпанзе, то окажется, что все люди отличаются гораздо меньше, чем шимпанзе в одном стаде. Так что, в какой-то степени, мы все - это одна большая генетическая семья.

Два человека (если они не идентичные близнецы) отличаются друг от друга в среднем только одной «буквой» генетического текста из тысячи. То есть у двух человек в тексте из 3 миллиардов нуклеотидов генома 3 миллиона «букв» - разные. Имен но с этими отличиями связаны на следуемые индивидуальные особенности каждого человека. Отличия генетических текстов человека от его ближайшего родственника в мире животных - шимпанзе - на порядок больше, у них одинаковы в среднем 99 из 100 букв. Так как дата разделения эволюционных ветвей шимпанзе и человека установлена, по этим данным можно определить скорость накопления мутаций. А выяснив, в каких участках ДНК эти мутации возникли и зафиксировались только в линии человека, можно найти мутации, которые «сделали нас людьми». Некоторые из них уже известны. Это мутации, инактивирующие часть генов обонятельных рецепторов: запахи в жизни человека играют гораздо меньшую роль, чем у шимпанзе. У человека, кроме того, утратил активность один из нескольких генов кератина - белка, образующего шерсть и волосы.

Среди других мутаций в линии человека особый интерес вызывают те, которые связаны с работой мозга. Найдены мутации в гене, который контролирует формирование зоны мозга, задействованной в обучении речи. Этот ген был найден при исследовании семьи, в которой неспособность освоить грамматику и правильно составлять фразы передавалась как наследственный признак. Дальнейший анализ структуры гена у разных видов животных показал, что он эволюционно стабилен, и только в линии человека произошли важные изменения.

В последние несколько лет изучение разнообразия генетических текстов людей стало одной из самых популярных областей науки. Здесь есть чисто практический интерес - с генетическими особенностями связано здоровье человека, и в их изучение фармацевтические компании вкладывают огромные средства. Вложения обещают отдачу в ближайшие десятилетия в виде разработки и введения в повседневную практику принципиально новых методов диагностики и лечения.

Есть и другой аспект таких генетических исследований - они позволяют реконструировать события давнего прошлого, восстановить пути миграций и историю возникновения со временных народов и самого вида Homo sapiens . Эти исследования привели к появлению новых направлений науки - молекулярной антропологии и палеогеномики.

Происхождение и расселение человека

Ранее историю появления вида Homo sapiens на Земле реконструировали на основе палеонтологических, археологических и антропологических данных. Часть ученых предполагала, что человек возник в одном из регионов мира - наиболее часто упоминалась Африка - и затем расселился по всей земле. Другая точка зрения, так называемая мультирегиональная гипотеза, предполагает, что предковый для человека вид Homo erectus , человек прямоходящий, вышедший из Африки и заселивший Азию более миллиона лет назад, превратился в Homo sapiens в различных точках земного шара независимо. В последние десятилетия с появлением молекулярных данных африканская гипотеза получила значительный перевес.

Молекулярно-генетические методы, используемые для восстановления демографической истории, сходны с лингвистической реконструкцией праязыка. Время, когда два родственных языка разделились (т. е. когда исчез их общий предковый праязык), оценивают по количеству различающихся слов, появившихся за период раздельного существования этих языков. Аналогично возраст общей предковой группы для двух современных родственных популяций рассчитывают по количеству мутаций, накопившихся в ДНК их представителей. Чем больше различий в ДНК, тем больше времени прошло с момента разделения популяций. Так как скорость накопления мутаций в ДНК известна, по числу мутаций, отличающих две популяции, можно определить дату их расхождения.

Идея о том, что скорость накопления мутаций может быть достаточно постоянна для того, чтобы использовать ее для датировки событий эволюционной истории как своего рода «молекулярные часы», была высказана Лайнусом Полингом и Эмилем Цукеркандлем в 1960-е гг. при изучении различий аминокислотной последовательности белка гемоглобина у разных видов животных. Позже, когда были разработаны методы чтения нуклеотидных последовательностей, скорость накопления мутаций была установлена при сравнении ДНК тех видов, время расхождения которых было хорошо установлено по ископаемым останкам. Для датировки этого события используют нейтральные мутации, которые не влияют на жизнеспособность индивида и не подвержены действию естественного отбора. Они найдены во всех участках генома человека, но наиболее часто используют мутации в ДНК, содержащейся в клеточных органеллах - митохондриях. В оплодотворенной яйцеклетке присутствует митохондриальная ДНК (мтДНК), полученная от матери, поскольку спермий свои митохондрии зародышу не передает.

Для филогенетических исследований мтДНК имеет особые преимущества. Во-первых, она не подвергается рекомбинации, как аутосомные гены, что значительно упрощает анализ родословных. Во-вторых, она содержится в клетке в количестве нескольких сот копий и гораздо лучше сохраняется в биологических образцах.

Первым использовал мтДНК для реконструкции истории человечества американский генетик Алан Уилсон в 1985 г. Он изучил образцы мтДНК, полученные из крови людей из всех частей света, и на основе выявленных между ними различий построил филогенетическое древо человечества. Оказалось, что все современные мтДНК могли произойти от мтДНК общей праматери, жившей в Африке. Обладательницу предковой мтДНК тут же окрестили «митохондриальной Евой», что породило неверные толкования - будто всё человечество произошло от одной-единственной женщины. На самом деле у «Евы» было несколько тысяч соплеменниц, просто их мтДНК до наших времен не дошли. Однако все они, без сомнения, внесли свой вклад, т. е. от них мы унаследовали генетический материал хромосом.

Различия характера наследования в данном случае можно сравнить с семейным достоянием: деньги и земли человек может получить от всех предков, а фамилию - только от одного из них. Генетическим аналогом фамилии, передаваемой по женской линии, служит мтДНК, а по мужской - Y-хромосома, передаваемая от отца к сыну (рис. 6).

Восстановление популяционной истории человечества по Y-хромосоме показало (к большой радости генетиков), что «Адам» - предок современных мужчин по мужской линии - жил примерно там же, где и «Ева». Хотя данные, полученные при анализе вариаций в Y-хромосоме, менее точны, они так же указывают на африканское происхождение вида Homo sapiens и существование единой предковой для современного человечества популяции. Молекулярные датировки времени разделения этой группы на ветви, ведущие к современным популяциям, зависят от используемых методов оценки. Наиболее вероятным считается период от 135 до 185 тысяч лет назад.

Исследования ДНК неандертальцев

В генетической реконструкции истории человеческого рода используют данные не только о человеке, но и о его ближайших эволюционных родственниках, вымерших десятки тысяч лет назад, - неандертальцах. В настоящее время считается, что миграции представителей рода Homo из Африки происходили несколько раз и были связаны с изменениями климата и волнами расселения тех животных, на которых охотились древние люди. Более миллиона лет назад вышел из Африки и расселился в Азии вид Homo erectus. Около 300 тысяч лет назад Европу и Западную Азию заселили неандертальцы, которые обитали там до 28 тысяч лет назад. Часть этого времени они сосуществовали с человеком современного анатомического типа, расселившимся в Европе около 40–50 тысяч лет назад. Ранее, на основе сравнения останков неандертальцев с человеком современного типа, было выдвинуто три гипотезы: 1) неандертальцы были прямыми предками человека; 2) они внесли некоторый генетический вклад в генофонд Homo sapiens; 3) они являлись независимой ветвью и были полностью замещены человеком современного типа, не внеся генетического вклада.

В решении этого вопроса важную роль сыграли геномные исследования. В 1997 г. работающему в Германии генетику Сванте Пэбо удалось прочесть участок мтДНК, выделенной из останков неандертальца, найденных более ста лет назад, в 1856 г., в долине Неандер близ Дюссельдорфа. Интересно, что по иронии судьбы название долины (Neander Valley), по которому английский антрополог и анатом Уильям Кинг предложил назвать находку Homo neanderthalensis, означает в переводе с греческого «новый человек».

Летом 2000 г. появилось сообщение другой группы ученых об исследовании второго образца неандертальской мтДНК, выделенной из костных останков ребенка, найденных в пещере Мезмай на Северном Кавказе. В этом случае останки точно датированы радиоуглеродным методом - им 29 000 лет. Это представитель одной из последних живших на Земле групп неандертальцев.

Древние ДНК обычно сильно фрагментированы. Загрязнение их следами современных ДНК, которые могут попасть на образец при дыхании исследователя или даже из воздуха лаборатории, дает ложные результаты, поэтому приходится соблюдать особые меры предосторожности. Ученые работают с образцами в специальных помещениях и в костюмах, напоминающих космические скафандры, чтобы исключить загрязнение образцов современными ДНК. Считается, что доступная для анализа ДНК при благоприятных условиях сохраняется не более 70 тысяч лет, а в более древних образцах она полностью разрушена.

Результаты молекулярно-генетических исследований свидетельствуют, что неандертальцы, хотя и являются близкими родственниками человека, вклада в его генофонд не внесли (по крайней мере, по материнской линии). Обе неандертальских мтДНК имеют общие черты, отличающие их от мтДНК современных людей. Отличия нуклеотидных последовательностей неандертальцев от мтДНК человека выходят за границы внутривидового разнообразия H. sapiens. Это говорит о том, что неандертальцы представляют генетически отдельную, хотя и близкородственную человеку ветвь. Время существования последнего общего предка человека и неандертальца оценивается по числу различий между мтДНК как 500 000 лет. По палеонтологическим данным, предки неандертальцев появились в Европе около 300 тысяч лет назад. То есть разделение генетических линий, ведущих к человеку и неандертальцу, должно было произойти раньше этой даты, что и показывают датировки по мтДНК.

Общая схема эволюции человека и неандертальца, построенная по результатам анализа мтДНК с учетом палеонтологических и генетических данных, представлена на рис. 7. Неандерталец эволюционировал в Европе одновременно с эволюцией предков современного человека в Африке и был более приспособлен к холодному климату. После расселения из Африки люди были соседями неандертальцев на протяжении как минимум 12 тысяч лет, после чего неандертальцы вымерли. Неизвестно, какова связь этих событий - проиграл ли неандерталец в конкуренции с человеком, или его вымирание связано с другими причинами.

Гены идут по свету... и меняются

Реконструкция популяционной истории человечества по мутациям в Y-хромосоме, проводившаяся так же, как и по мтДНК, позволила построить древо родства всего человечества по мужской линии. Время появления мутаций датируется генетическими методами. Так как известно, у народов каких регионов и континентов встречаются те или иные мутации, можно, «положив» на карту «деревья», отражающие последовательность появления мутаций в мтДНК и Y-хромосоме, установить время и последовательность заселения человеком разных регионов (рис. 8, 9) и реконструировать порядок появления генетических линий в составе генофондов современных народов.

Как упоминалось выше, по современным оценкам, вид Homo sapiens появился в Африке не ранее 180 тысяч лет назад. Первая попытка выхода из Африки, совершенная человеком около 90 тысяч лет назад, была не успешной. Люди современного анатомического типа заселили Восточное Средиземноморье (территория современного Израиля), но затем их следы исчезают, и в этих местах поселяются неандертальцы. Предполагается, что человек вымер или отступил обратно в Африку из-за похолодания. Следующая попытка, которую удалось зафиксировать генетикам, была сделана через 10–15 тыс. лет. Ветвь генетического древа протянулась из Эфиопии на юг Аравийского полуострова. Именно этим путем люди попали в Азию, а затем оттуда заселили Австралию, острова Океании и Европу. Позже всего была заселена Америка.

На протяжении большей части своей эволюционной истории люди жили небольшими группами. Такие группы кочуют по своей территории, обычно не совершая далеких миграций, если их к этому не вынуждают обстоятельства, например недостаток еды из-за перемены климата или сильного увеличения численности группы. При увеличении численности часть группы отселяется на новую территорию. Не исключено, что гены влияли и на то, кто именно уйдет искать новые земли, а кто останется в уже обжитых местах. Чем дальше от азиатских центров расселения живет популяция, тем выше у нее частота того варианта гена рецептора DRD4, который связан со стремлением к новизне. В Европе самая высокая частота этого аллеля среди исследованных групп найдена у ирландцев, а в мире - у индейцев Южной Америки.

Интересно, что различия между популяциями в разных регионах мира по Y-хромосоме оказались в несколько раз выше, чем по мтДНК. Это свидетельствует о том, что перемешивание генетического материала по женской линии происходило более интенсивно, то есть уровень миграции женщин превышал уровень миграции мужчин. И хотя эти данные могут показаться удивительными - путешествия всегда считались прерогативой мужчин, - они могут объясняться тем, что большинство человеческих обществ патрилокальны, то есть в них жена обычно переходит жить в дом мужа. Брачные миграции женщин оставили более заметный след на генетической карте человечества, чем дальние походы Чингисхана или Батыя. Это подтверждается и тем, что в немногих исследованных группах, где по традиции после заключения брака муж переселяется к жене, картина распределения генетических линий обратная: в этих группах выше различия по мтДНК, а не по Y-хромосоме.

Конечно, в истории человечества популяции не только разделялись, но и смешивались. На примере линий мтДНК результаты такого смешения можно наблюдать у народов Волго-Уральского региона. Здесь столкнулись две волны расселения - европейская и азиатская. В каждой из них к моменту встречи на Урале в мтДНК успели накопиться десятки мутаций. У народов Западной Европы азиатские линии мтДНК практически отсутствуют.

Различные мутации в мтДНК и Y-хромосоме позволили реконструировать историю расселения людей. Но разные народы отличаются и по мутациям в других участках генома. В изолированных популяциях, не смешивающихся из-за географических, лингвистических или религиозных барьеров, различия возникают за счет независимого появления новых мутаций и за счет изменения частот аллелей - как случайного, так и направленного естественным отбором. Случайное изменение частот аллелей в популяции называется генетическим дрейфом. При сокращении численности группы или отселении небольшой ее части, дающей начало новой популяции, частоты аллелей могут резко измениться. В новой популяции они будут зависеть от генофонда основавшей ее группы (так называемый эффект основателя). С этим эффектом связывают повышенную частоту болезнетворных мутаций в некоторых этнических группах. Например, у японцев один из видов врожденной глухоты вызывается мутацией, возникшей однократно в прошлом и не встречающейся в других районах мира. У белых австралийцев глаукома связана с мутацией, завезенной переселенцами из Европы. У исландцев найдена мутация, повышающая риск развития рака и восходящая к общему прародителю. Аналогичная ситуация обнаружена у жителей острова Сардиния, но у них мутация другая, отличная от исландской.

Эффект основателя - одно из возможных объяснений отсутствия у американских индейцев разнообразия по группам крови: у них преобладает первая (частота ее более 90%, а во многих популяциях - и все 100%). Так как Америка заселялась переселенцами, пришедшими из Азии через перешеек, соединявший эти материки более 10 тысяч лет назад, возможно, что в популяциях, давших начало коренному населению Нового Света, другие группы крови отсутствовали или были утрачены в процессе расселения малочисленных мигрантов.