Косоугольная фронтальная диметрическая проекция. Косоугольная фронтальная изометрическая проекция

Во многих случаях при выполнении технических чертежей оказывается полезным наряду изображением предметов в системе ортогональных проекций иметь более наглядные изображения. Для построения таких изображений применяются проекции, называемые аксонометрическими .

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α (Рисунок 4.1).

Рисунок 4.1

Направление проецирования S определяет положение аксонометрических осей на плоскости проекций α , а также коэффициенты искажения по ним. При этом необходимо обеспечить наглядность изображения и возможность производить определения положений и размеров предмета.

В качестве примера на Рисунке 4.2 показано построение аксонометрической проекции точки А по ее ортогональным проекциям.

Рисунок 4.2

Здесь буквами k , m , n обозначены коэффициенты искажения по осям OX , OY и OZ соответственно. Если все три коэффициента равны между собой, то аксонометрическая проекция называется изометрической , если равны между собой только два коэффициента, то проекция называется диметрической , если же k≠m≠n , то проекция называется триметрической .

Если направление проецирования S перпендикулярно плоскости проекций α , то аксонометрическая проекция носит названия прямоугольной . В противном случае, аксонометрическая проекция называется косоугольной .

ГОСТ 2.317-2011 устанавливает следующие прямоугольные и косоугольные аксонометрические проекции:

  • прямоугольные изометрические и диметрические;
  • косоугольные фронтально изометрические, горизонтально изометрические и фронтально диметрические;

Ниже приводятся параметры только трех наиболее часто применяемых на практике аксонометрических проекций.

Каждая такая проекция определяется положением осей, коэффициентами искажения по ним, размерами и направлениями осей эллипсов, расположенных в плоскостях, параллельных координатным плоскостям. Для упрощения геометрических построений коэффициенты искажения по осям, как правило, округляются.

4.1. Прямоугольные проекции

4.1.1. Изометрическая проекция

Направление аксонометрических осей приведено на Рисунке 4.3.

Рисунок 4.3 – Аксонометрические оси в прямоугольной изометрической проекции

Действительные коэффициенты искажения по осям OX , OY и OZ равны 0,82 . Но с такими значениями коэффициентов искажения работать не удобно, поэтому, на практике, используются приведенные коэффициенты искажений . Эта проекция обычно выполняется без искажения, поэтому, приведенные коэффициенты искажений принимается k = m = n =1 . Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются в эллипсы, большая ось которых равна 1,22 , а малая – 0,71 диаметра образующей окружности D .

Большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY , OZ и OX , соответственно.

Пример выполнения изометрической проекции условной детали с вырезом приводится на Рисунке 4.4.

Рисунок 4.4 – Изображение детали в прямоугольной изометрической проекции

4.1.2. Диметрическая проекция

Положение аксонометрических осей проводится на Рисунке 4.5.

Для построения угла, приблизительно равного 7º10´ , строится прямоугольный треугольник, катеты которого составляют одну и восемь единиц длины; для построения угла, приблизительно равного 41º25´ — катеты треугольника, соответственно, равны семи и восьми единицам длины.

Коэффициенты искажения по осям ОХ и OZ k=n=0,94 а по оси OY – m=0,47 . При округлении этих параметров принимается k=n=1 и m=0,5 . В этом случае размеры осей эллипсов будут: большая ось эллипса 1 равна 0,95D и эллипсов 2 и 3 – 0,35D (D – диаметр окружности). На Рисунке 4.5 большие оси эллипсов 1, 2 и 3 расположены под углом 90º к осям OY, OZ и OX, соответственно.

Пример прямоугольной диметрической проекции условной детали с вырезом приводится на Рисунке 4.6.

Рисунок 4.5 – Аксонометрические оси в прямоугольной диметрической проекции

Рисунок 4.6 – Изображение детали в прямоугольной диметрической проекции

4.2 Косоугольные проекции

4.2.1 Фронтальная диметрическая проекция

Положение аксонометрических осей приведено на Рисунке 4.7. Допускается применять фронтальные диметрические проекции с углом наклона к оси OY, равным 30 0 и 60 0 .

Коэффициент искажения по оси OY равен m=0,5 а по осям OX и OZ — k=n=1 .

Рисунок 4.7 – Аксонометрические оси в косоугольной фронтальной диметрической проекции

Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекций, проецируются на плоскость XOZ без искажения. Большие оси эллипсов 2 и 3 равны 1,07D , а малая ось – 0,33D (D — диаметр окружности). Большая ось эллипса 2 составляет с осью ОХ угол 7º 14´ , а большая ось эллипса 3 составляет такой же угол с осью OZ.

Пример аксонометрической проекции условной детали с вырезом приводится на Рисунке 4.8.

Как видно из рисунка, данная деталь располагается таким образом, чтобы её окружности проецировались на плоскость XОZ без искажения.

Рисунок 4.8 – Изображение детали в косоугольной фронтальной диметрической проекции

4.3 Построение эллипса

4.3.1 Построения эллипса по двум осям

На данных осях эллипса АВ и СD строятся как на диаметрах две концентрические окружности (Рисунок 4.9, а).

Одна из этих окружностей делится на несколько равных (или неравных) частей.

Через точки деления и центр эллипса проводятся радиусы, которые делят также вторую окружность. Затем через точки деления большой окружности проводятся прямые, параллельные линии АВ.

Точки пересечения соответствующих прямых и будут точками, принадлежащими эллипсу. На Рисунке 4.9, а показана лишь одна искомая точка 1.

а б в

Рисунок 4.9 – Построение эллипса по двум осям (а), по хордам (б)

4.3.2 Построение эллипса по хордам

Диаметр окружности АВ делится на несколько равных частей, на рисунке 4.9,б их 4. Через точки 1-3 проводятся хорды параллельно диаметру CD. В любой аксонометрической проекции (например, в косоугольной диметрической) изображаются эти же диаметры с учетом коэффициента искажения. Так на Рисунке 4.9,б А 1 В 1 =АВ и С 1 D 1 = 0,5CD . Диаметр А 1 В 1 делится на то же число равных частей, что и диаметр АВ, через полученные точки 1-3 проводятся отрезки, равные соответственным хордам, умноженным на коэффициент искажение (в нашем случае – 0,5).

4.4 Штриховка сечений

Линии штриховки сечений (разрезов) в аксонометрических проекциях наносятся параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (Рисунок 4.10: а – штриховка в прямоугольной изометрии; б – штриховка в косоугольной фронтальной диметрии).

а б
Рисунок 4.10 – Примеры штриховки в аксонометрических проекциях

ГОСТ 2.317-69* (СТ СЭВ 1979-79) устанавливает прямоугольные и косоугольные аксонометрические проекции. Прямоугольные проекции делятся на изометрические и диметрические, косоугольные - на фронтальные изометрические, горизонтальные изометрические и фронтальные диметрические.

Прямоугольные проекции

Прямоугольная изометрическая проекция. Положение аксонометрических осей приведено на рисунке слева вверху. Коэффициент искажения по осям х, у, z равен 0,82; как правило, его округляют до 1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на эти плоскости в эллипсы (смотри на тот же рисунок чуть ниже). Большие оси эллипсов 1, 2, 3 перпендикулярны соответственно к осям у, z, х. Если коэффициент искажения по осям принят равным 1, то большие оси эллипсов равны 1,22, а малые 0,71 диаметра окружности.

Прямоугольная диметрическая проекция. Положение аксонометрических осей приведено на рисунке справа. Коэффициент искажения по оси у равен 0,47, по осям х и z - 0,94; как правило, коэффициент искажения по оси у округляют до 0,5, по осям x и z - до 1. Окружности, лежащие в плоскостях, параллельных плоскостям проекций, проецируются на эти плоскости в эллипсы, большие оси которых перпендикулярны соответственно к осям у, z, х. Если коэффициент искажения по осям х и у принят равным 1, то большие оси эллипсов равны 1,06 диаметра окружности, малая ось эллипса 1 равна 0,95, а эллипсов 2 и 3 - 0,35 диаметра окружности.

Косоугольные проекции

Косоугольная фронтальная изометрическая проекция . Положение аксонометрических осей приведено на рисунке ниже(а). Угол наклона оси у к горизонтальной линии равен 45°, допускается угол 30° или 60°. Коэффициент искажения по осям х, у, 2 равен 1.

Косоугольная горизонтальная изометрическая проекция. Положение аксонометрических осей приведено на рисунке (б). Угол наклона оси у к горизонтальной линии равен 30°, Допускается угол 45° и 60°. Коэффициент искажения по осям х, У, z равен 1.

. Положение аксонометрических осей приведено на рисунке выше (в).Угол наклона оси у к горизонтальной линии равен 45°, допускается угол 30° и 60°. Коэффициент искажения по оси у равен 0,5, по осям х и z - 1. Окружности, лежащие в плоскостях, параллельных фронтальной плоскости проекции, проецируются в окружности; в плоскостях, параллельных горизонтальной и профильной плоскостям проекций, - в эллипсы (рис. 5.31). Большая ось эллипса 2 составляете осью х угол 7°14", большая ось эллипса 3 с осью z - угол 7° 14". Большие оси эллипсов 2 и 3 равны 1,07, малые оси - 0,33 диаметра окружности.

Штриховка и нанесение размеров

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагоналей квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рисунок ниже). Ребра жесткости, спицы маховиков и подобные элементы, попадающие в секущую плоскость, штрихуются.

Примеры изображения деталей в аксонометрических проекциях

Линии штриховки в аксонометрических проекциях: а - в прямоугольной изометрической; 6 - в прямоугольной диметрической; в - в косоугольной фронтальной диметрической
Изображение детали в прямоугольной изометрической проекции
Изображение детали в прямоугольной диметрической проекции
Изображение детали в косоугольной фронтальной диметрической проекции
Нанесение размеров в аксонометрических проекциях

При нанесении размеров выносные линии проводят параллельно осям координат, размерные линии - параллельно измеряемому отрезку (рисунок выше).

Косоугольная диметрическая проекция (фронтальная)

Если расположить координатные оси Х и Y параллельно плоскости П¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X " и Z" составят прямой угол, ось Y" обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z ", так и влево.

Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться в два раза (рис.10.21).

Наклонные сечения.

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

Сначала строим проекции его на П 1 и на П 2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П 4 , параллельная заданной секущей плоскости А-А , на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1. 1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А .

2. 2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной перпендикулярно осевой.

3. 3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

4. Аналогично строится истинная величина сечения поверхности вращения - эллипс.

Расстояние между точками 1 и 5 -большая ось эллипса. Малую ось эллипса надо строить путем деления большой оси пополам (3-3 ).

Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

Рассмотрим более сложный пример, включающий многогранные поверхности и поверхности вращения (рис.11.3)

Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с горизонтальной проекцией призмы.

Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

Последовательность выполнения наклонного сечения:

1. Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

2. Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками с горизонтальной.

Косоугольная фронтальная диметрическая проекция.

Положение осей во фронтальной диметрии аналогичны расположению осей во фронтальной изометрии. Её следует строить без сокращения по осям ОХ и OZ и с сокращением в два раза по оси ОY ; коэффициенты искажения по осям ОХ и OZ равны 1, по оси ОY – 0,5.

На рис. 68 изображены: а – аксонометрические оси; б – аксонометри­ческая проекция куба с окружностями, вписанными в три видимые грани.

Рис. 68. Косоугольная фронтальная диметрия

В передней грани, параллельной координатной плоскости XOZ , окруж­ность изображается без искажений, в двух других гранях – одинаковыми эллипсами, большие оси которых равны 1,07 D , а малые – 0,33 D , где D – диаметр вписанной окружности. Направления больших осей эллипсов отклоняются от большей диагонали параллелограмма на 7º. Эти эллипсы можно также вычертить способом, указанным для прямоугольной диметрии (см. рис. 63б), так как различие в размерах осей незначительно.

Пример фронтальной диметрической проекции детали приведён на рис. 69.

Косоугольные фронтальные диметрические и изометрические проекции рекомендуется применять в тех случаях, когда целесообразно сохранить неискажёнными элементы фигуры, расположенные во фронтальных плоскостях. Это значительно упрощает построение аксонометрического изображения.

Рис. 69. Деталь с разрезом в косоугольной фронтальной диметрии

5.5.7. Косоугольная горизонтальная изометрическая проекция.

Расположение аксонометрических осей с нанесением штриховки в раз­резах и аксонометрическая проекция куба с вписанными в грани окруж­ностями представлены на рис. 70. Ось ОY составляет с горизонталью угол 30 0 . ГОСТ 2.317-69 допускает применять и другие углы между горизонталью и осью ОУ , при этом угол 90° между осями ОХ и ОY сохраняется. Коэффициент искажения по осям ОХ, ОY и OZ равен 1. Размеры осей эллипса, расположенного в грани, параллельной координатной плоскости YOZ , равны осям эллипсов прямоугольной изометрии. Вместо эллипса можно построить овал способом, приведённым на рис. 59. Второй эллипс в грани, параллельной плоскости ХОZ , строят по восьми точкам. Оси эллипсов совпадают с диагоналями граней куба.

Рис. 70. Косоугольная горизонтальная изометрия

В горизонтальной изометрии фигуры или их элементы, расположенные в горизонтальных плоскостях, не искажаются. Поэтому этот вид аксонометрии применяют тогда, когда требуется изобразить в натуральную величину фигуры, лежащие в плоскостях, параллельных горизонтальной плоскости проекций.

Пример горизонтальной изометрической проекции приведён на рис. 71.

Рис. 71. Деталь в косоугольной горизонтальной изометрии

Вопросы для самоконтроля

1. Как располагают предмет относительно фронтальной плоскости проекций?

2. Как разделяют изображения на чертеже в зависимости от их содержания?

3. Какое изображение называется видом?

4.Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

5. Какие виды обозначают и как их надписывают?

6. Какие виды называются дополнительными, какие – местными?

7. Какое изображение называется разрезом?

8. Как при разрезах указывают положение секущей плоскости?

9. Какой надписью отмечают разрез?

10. Как разделяются разрезы в зависимости от положения секущей плоскости?

11. Как классифицируются разрезы в зависимости от числа секущих плоскостей?

12. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

13. Какой разрез называется местным и как он выделяется на виде?

14. Что служит разделяющей линией при соединении половины вида и разреза?

15. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

16. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

17. Какое изображение принимают на чертеже в качестве главного?

18. Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

19. Какое изображение называется разрезом?

20.Как при разрезах указывают положение секущей плоскости?

21. Где могут быть расположены горизонтальный, фронтальный и профильный разрезы и когда их не обозначают?

22. Как в сложном разрезе проводят линию сечения?

23. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

24. Какой разрез называется местным и как он выделяется на виде?

25. Что служит разделяющей линией при соединении половины вида и разреза?

26. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

27. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

28. Каковы особенности изометрической прямоугольной проекции?

29. Как построить прямоугольную изометрию окружности, расположен­ную в горизонтальной координатной плоскости (фронтальной, профильной)?

30. Как построить овал по четырём точкам в прямоугольной изометрии?

31. Каков порядок построения аксонометрии детали, заданной её про­екциями?

32. Как располагаются оси в прямоугольной диметрии? Чему равны коэффициенты искажения?

33. Чем руководствуются при выборе вида прямоугольной аксономет­рической проекции?

34. В каких единицах проставляются линейные размеры на чертежах и указывается ли единица измерения?

35. Допускается ли использование линий контура, осевых и центровых линий в качестве размерных?

36. Допускается ли пересекать или разделять размерные числа линиями чертежа?

37. Какие знаки используют для нанесения размеров диаметра и радиуса окружности, квадрата и уклона?

38. В каких случаях допускается проводить размерные линии с обрывом?

Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.

Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.

Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:

Изометрические, когда все три коэффициента искажения одинаковы (k x =k y =k z);

Диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (k x = k z ≠k y);

Триметрические, когда все три коэффициенты искажения не равны между собой (k x ≠k y ≠k z).

В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.

В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.

Изометрические оси изображены на рисунке 57.


Рисунок 57

Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О - получают направление оси Х. Таким же образом соединяют точку С с точкой О - получают направление оси Y.


Рисунок 58

Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.


Рисунок 59

Построение окружности в прямоугольной изометрической проекции

Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.

Размер большой оси эллипса 1,22d, малой 0,7d, где d - диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ - большая ось эллипса.


Рисунок 60

Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О 1 , О 2 , О 3 , О 4 , являющиеся центрами дуг овала (рисунок 61).

Для определения точек сопряжения проводят линии центров, соединяя О 1 , О 2 , О 3 , О 4 . из полученных центров О 1 , О 2 , О 3 , О 4 проводят дуги радиусами R и R 1 . размеры радиусов видны на чертеже.


Рисунок 61

Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).


Рисунок 62

Штриховка и изометрической проекции

Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.

Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.

По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты k x =k z =1, k y =0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.

Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:

На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа - семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.


Рисунок 63

Построение диметрической проекции шестиугольника

Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П 1 (рисунок 64).


Рисунок 64

На оси Х откладываем отрезок равный величине b , чтобы его середина находилась в точке О, а по оси Y - отрезок а , размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.


Рисунок 65

Построение окружности в диметрии

В прямоугольной диметрии все окружности изображаются эллипсами,

Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей - 0,35 d.

На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).

Через точку О - начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО 1 и ОО 2 , равные по величине 1,06d. Точки О 1 и О 2 являются центром больших дуг овала. Для определения еще двух центров (О 3 и О 4) откладываем на горизонтальной прямой от точек А и В отрезки АО 3 и ВО 4 , равные ¼ величины малой оси эллипса, то есть d.


Рисунок 66

Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 - радиусом до точек А и В (рисунок 67).


Рисунок 67

Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П 2 , рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О 1 , О 2, О 3, О 4 - центры дуг овала (рисунок 68).

Из центров О 3 и О 4 описывают дугу радиусом R 2 =О 3 М, а из центров О 1 и О 2 - дуги радиусом R 1 = О 2 N


Рисунок 68

Штриховка а прямоугольной диметрии

Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).


Рисунок 69

  1. Какие виды аксонометрических проекций вы знаете?
  2. Под каким углом расположены оси в изометрии?
  3. Какую фигуру представляет изометрическая проекция окружности?
  4. Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
  5. Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
  6. Под какими углами расположены оси в диметрии?
  7. Какой фигурой будет являться диметрическая проекция квадрата?
  8. Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
  9. Основные правила нанесения штриховки в аксонометрических проекциях.