Мгновенная и средняя скорости. Мгновенная скорость: понятие, формула расчета, рекомендации по нахождению

Изменяются ее координаты. Координаты могут изменяться быстро или медленно. Физическая величина, которая характеризует быстроту изменения координаты, называется скоростью.

Пример

Средняя скорость -- это вектор ная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения:$\left\langle v\right\rangle =\frac{\triangle r}{\triangle t}$ ; $\left\langle v\right\rangle \uparrow \uparrow \triangle r$

Рисунок 1. Средняя скорость сонаправлена перемещению

Mодуль средней скорости по пути равен: $\left\langle v\right\rangle =\frac{S}{\triangle t}$

Мгновенная скорость дает точную информацию о движении в определенный момент времени. Выражение «скорость тела в данный момент времени» с точки зрения физики не является корректным. Однако понятие мгновенной скорости очень удобно в математических расчетах, и им постоянно пользуются.

Мгновенная скорость (или просто скорость) есть предел, к которому стремится средняя скорость $\left\langle v\right\rangle $ при стремлении промежутка времени $\triangle t$ к нулю:

$v={\mathop{lim}_{\triangle t} \frac{\triangle r}{\triangle t}\ }=\frac{dr}{dt}=\dot{r}$ (1)

Вектор $v$ направлен по касательной к криволинейной траектории, так как бесконечно малое (элементарное) перемещение dr совпадает с бесконечно малым элементом траектории ds.

Рисунок 2. Вектор мгновенной скорости $v$

В декартовых координатах уравнение (1) эквивалентно трем уравнениям

$\left\{ \begin{array}{c} v_x=\frac{dx}{dt}=\dot{x} \\ v_y=\frac{dy}{dt}=\dot{y} \\ v_z=\frac{dz}{dt}=\dot{z} \end{array} \right.$ (2)

Модуль вектора $v$ в этом случае равен:

$v=\left|v\right|=\sqrt{v^2_x+v^2_y+v^2_z}=\sqrt{x^2+y^2+z^2}$ (3)

Переход от декартовых прямоугольных координат к криволинейным осуществляется по правилам дифференцирования сложных функций. Пусть радиус-вектор r есть функция криволинейных координат: $r=r\left(q_1,q_2,q_3\right)\ $. Тогда скорость $v=\frac{dr}{dt}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}\frac{\partial q_i}{\partial t}}=\sum^3_{i=1}{\frac{\partial r}{\partial q_i}}\dot{q_i}$

Рисунок 3. Перемещение и мгновенная скорость в системах криволинейных координат

В сферических координатах, полагая $q_1=r;\ \ q_2=\varphi ;\ \ q_3=\theta $, получаем представление $v$ в следующий форме:

$v=v_re_r+v_{\varphi }e_{\varphi }+v_{\theta }e_{\theta }$, где $v_r=\dot{r};\ \ v_{\varphi }=r\dot{\varphi }sin\theta ;;\ \ v_{\theta }=r\dot{\theta }\ ;;$ \[\dot{r}=\frac{dr}{dt};;\ \ \dot{\varphi }=\frac{d\varphi }{dt};;\ \ \dot{\theta }=\frac{d\theta }{dt}; v=r\sqrt{1+{\varphi }^2sin^2\theta +{\theta }^2}\]

Мгновенная скорость - это значение производной от функции перемещения по времени в заданный момент времени, и связана с элементарным перемещением следующим соотношением: $dr=v\left(t\right)dt$

Задача 1

Закон движения точки по прямой: $x\left(t\right)=0,15t^2-2t+8$. Найти мгновенную скорость точки через 10 секунд после начала движения.

Мгновенная скорость точки -- это первая производная радиус-вектора по времени. Поэтому для мгновенной скорости можно записать:

Ответ: Через 10 с после начала движения мгновенная скорость точки 1 м/с.

Задача 2

Движение материальной точки задано уравнением~ $x=4t-0,05t^2$. Определить момент времени $t_{ост.}$, в который точка остановится, и среднюю путевую скорость $\left\langle v\right\rangle $.

Найдем уравнение мгновенной скорости: $v\left(t\right)=\dot{x}\left(t\right)=4-0,1t$

Ответ: Точка остановится через 40 секунд после начала движения. Средняя скорость её движения 0,1 м/с.

Неравномерным считается движение с изменяющейся скоростью. Скорость может изменяться по направлению. Можно заключить, что любое движение НЕ по прямой траектории является неравномерным. Например, движение тела по окружности, движение тела брошенного вдаль и др.

Скорость может изменяться по численному значению. Такое движение тоже будет неравномерным. Особенный случай такого движения - равноускоренное движение.

Иногда встречается неравномерное движение, которое состоит из чередования различного вида движений, например, сначала автобус разгоняется (движение равноускоренное), потом какое-то время движется равномерно, а потом останавливается.

Мгновенная скорость

Охарактеризовать неравномерное движение можно лишь скоростью. Но скорость всегда изменяется! Поэтому можно говорить лишь о скорости в данное мгновение времени. Путешествуя на машине спидометр ежесекундно демонстрирует вам мгновенную скорость движения. Но время при этом надо уменьшить не до секунды, а рассматривать гораздо меньший промежуток времени!

Средняя скорость

Что же такое средняя скорость? Неверно думать, что необходимо сложить все мгновенные скорости и разделить на их количество. Это самое распространенное заблуждение о средней скорости! Средняя скорость - это весь путь разделить на затраченное время . И никакими другими способами она не определяется. Если рассмотреть движение автомобиля, можно оценить его средние скорости на первой половине пути, на второй, на всем пути. Средние скорости могут быть одинаковыми, а могут быть различными на этих участках.

У средних величин рисуют сверху горизонтальную черту.

Средняя скорость перемещения. Средняя путевая скорость

Если движение тела не является прямолинейным, то пройденный телом путь будет больше, чем его перемещение. В этом случае средняя скорость перемещения отличается от средней путевой скорости. Путевая скорость - скаляр .


Главное запомнить

1) Определение и виды неравномерного движения;
2) Различие средней и мгновенной скоростей;
3) Правило нахождения средней скорости движения

Часто требуется решить задачу, где весь путь разбит на равные участки, даны средние скорости на каждом участке, требуется найти среднюю скорость движения на всем пути. Неверное решение будет, если сложить средние скорости и разделить на их количество. Ниже выводится формула, которую можно использовать при решении подобных задач.

Мгновенную скорость можно определить с помощью графика движения. Мгновенная скорость тела в любой точке на графике определяется наклоном касательной к кривой в соответствующей точке. Мгновенная скорость - тангенс угла наклона касательной к графику функции.


Упражнения

Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?

Нельзя, так как в общем случае величина средней скорости не равна среднему арифметическому значению величин мгновенных скоростей. А путь и время не даны.


Какую скорость переменного движения показывает спидометр автомобиля?

Близкую к мгновенной. Близкую, так как промежуток времени должен быть бесконечно мал, а при снятии показаний со спидометра так о времени судить нельзя.


В каком случае мгновенная и средняя скорости равны между собой? Почему?

При равномерном движении. Потому что скорость не изменяется.


Скорость движения молотка при ударе равна 8м/с. Какая это скорость: средняя или мгновенная?

Как мы уже отмечали, равномерное движение является простейшей моделью механического движения. Если такая модель неприменима, то необходимо использовать более сложные. Для их построения нам необходимо ввести и рассмотреть понятие скорости в случае неравномерного движения.
 Пусть материальная точка движется так, что ее закон движения имеет вид плавной кривой АСВ (рис. 40).

Рис. 40
За интервал времени от t o до t 1 координата точки изменилась от х o до х 1 . Если мы вычислим скорость по прежнему правилу
v cp = Δx/Δt = (x 1 − x o)/(t 1 − t o) . (1)
и запишем уравнение закона движения как для равномерного движения
х = х o + v сp (t − t o) , (2)
то эта функция будет совпадать с реальным законом движения только в крайних точках интервала, там, где прямая АВ (которая описывается уравнением (2)) пересекается с кривой АСВ . Если же мы захотим вычислить по формуле (2) координату точки в промежуточный момент времени то получим значение х // , которое может заметно отличаться от истинного значения х / .
Таким образом, скорость (она называется средней скоростью), вычисленная по формуле (1), в данном случае характеризует быстроту перемещения точки на всем интервале в среднем, но она не позволяет вычислять координаты точки в произвольный момент времени.
 Средней скоростью называется физическая величина, равная отношению изменения координаты точки к интервалу времени, в течение которого это изменение произошло.
 Геометрический смысл средней скорости − коэффициент наклона секущей АВ графика закона движения.
 Для более детального, более точного описания движения можно задать два значения средней скорости:
 а) на промежутке времени от t o до t /
v cp1 = (x / − x o)/(t / − t o) ;
 б) на промежутке времени от t / до t 1
v cp2 = (x 1 − x /)/(t 1 − t /) .
 Если по этим двум средним скоростям построить закон движения, то он будет изображаться ломаной АСВ , которая точнее описывает реальное движение точки. А если и такая точность нас не устраивает, то необходимо дробить временные интервалы дальше − на четыре, восемь и т. д. частей. При этом необходимо задавать соответственно четыре, восемь и т. д. значений средних скоростей. Согласитесь, такое описание становится громоздким и неудобным. Выход из этой ситуации давно найден − он заключается в том, что нужно рассматривать скорость как функцию времени.
 Давайте посмотрим, как будет меняться средняя скорость при уменьшении промежутка времени, за который мы эту скорость вычисляем. Будем вычислять среднюю скорость за интервал времени от t o до t 1 , последовательно приближая значение к t o . При этом семейство секущих А o A 1 , А o A 1 / , А o A 1 // (рис. 41)

рис. 41
будет стремиться к некоторому предельному положению прямой А o B , которая является касательной к графику закона движения.
 Приведем иной пример закона движения, чтобы показать, что мгновенная скорость может быть как больше, так и меньше средней скорости (рис. 42 с теми обозначениями, что и на рис. 41).

рис. 42
 Процедуру уточнения описания движения можно показать и алгебраически, последовательно вычисляя отношения
v cp = (x 1 − x o)/(t 1 − t o), v cp / = (x 1 / − x o)/(t 1 / − t o), v cp // = (x 1 // − x o)/(t 1 // − t o) .
При этом оказывается, что эти величины приближаются к некоторому вполне определенному значению. Это предельное значение получило название мгновенной скорости.
 Мгновенной скоростью называется отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, при интервале времени, стремящемся к нулю 1 :
v = Δx/Δt при Δt → 0 . (3)
 Геометрический смысл мгновенной скорости − коэффициент наклона касательной к графику закона движения.
 Таким образом, мы «привязали» значение мгновенной скорости к конкретному моменту времени − задали значение скорости в данный момент времени в данной точке пространства. Тем самым у нас появилась возможность рассматривать скорость тела как функцию времени, или функцию координаты.
С математической точки зрения это гораздо удобней, чем задавать значения средних скоростей на многих малых временных промежутках. Давайте задумаемся: а имеет ли физический смысл − скорость в данный момент времени? Скорость − характеристика движения, в данном случае − перемещения тела в пространстве. Для того чтобы зафиксировать перемещение, необходимо наблюдать за движением в течение некоторого промежутка времени. Чтобы измерить скорость, также необходим промежуток времени. Даже самые совершенные измерители скорости − радарные установки − измеряют скорость движущихся автомобилей пусть за малый (порядка одной миллионной доли секунды) промежуток, но не в какой-то момент времени. Следовательно, выражение «скорость в данный момент времени» с точки зрения физики некорректно. Тем не менее в механике постоянно пользуются понятием мгновенной скорости, которое очень удобно в математических расчетах. Математически, логически мы можем рассмотреть предельный переход Δt → 0 , а физически имеется минимально возможное значение промежутка Δt , за который можно измерить скорость.
 Однако если мы изучаем движение автомобиля в течение нескольких часов, то промежуток времени в одну секунду может считаться бесконечно малым.
 Таким образом, понятие мгновенной скорости является разумным компромиссом между простотой математического описания и строгим физическим смыслом. Такие «компромиссы» нам будут встречаться в ходе изучения физики постоянно.
 В дальнейшем, говоря о скорости, мы будем иметь в виду именно мгновенную скорость. Заметим, при равномерном движении мгновенная скорость равна ранее определенной скорости потому, что при равномерном движении отношение Δx/Δt не зависит от величины промежутка времени, поэтому остается неизменным и при сколь угодно малом Δt .
 Так как скорость может зависеть от времени, то ее следует рассматривать как функцию времени и изображать ее в виде графика.
 При равномерном движении с постоянной скоростью у график зависимости скорости от времени является прямой линией, параллельной оси времени (на рис. 43 − прямая АВ ).
Рассмотрим промежуток времени от t o до t 1 . Произведение величины этого интервала (t 1 − t o ) на скорость v o равно, с одной стороны изменению координаты Δx , а сдругой − площади прямоугольника под графиком зависимости скорости от времени.

рис. 43
 Площадь под графиком следует понимать, опять же таки в физическом смысле, как произведение физических величин, имеющих различную размерность, а не в чисто геометрическом смысле − как произведение длин отрезков.
 Покажем, что площадь под графиком зависимости скорости от времени равна изменению координаты при любой зависимости скорости от времени v(t) . Разобьем время движения от t o до t на малые интервалы величиной Δt ; на каждом интервале определим среднюю скорость v 1 . Тогда площадь прямоугольника с основанием Δt и высотой v 1 (на рис. 44 он отмечен более плотной штриховкой) будет равна изменению координаты за этот малый промежуток времени. Сумма площадей всех таких прямоугольников (на рис. 44 заштрихованы)

рис. 44
будет равна изменению координаты точки за рассматриваемый промежуток времени движения от t o до t 1 . Если теперь все интервалы времени Δt уменьшать (соответственно увеличивая при этом их число), то суммы площадей прямоугольников будут стремиться к площади криволинейной трапеции под графиком функции v(t) .
 Дополним наше определение площади под кривой еще одной договоренностью: будем считать, что если кривая лежит t под осью времени (то есть скорость отрицательна), то и соответствующую площадь будем считать отрицательной (рис. 45).

рис. 45


Ни одно тело не движется все время с постоянной скоростью. Трогаясь с места, автомобиль начинает двигаться все быстрее и быстрее. Некоторое время он может двигаться равномерно, но рано или поздно замедляет движение и останавливается. При этом он проходит различные расстояния за одни и те же интервалы времени.
Что же надо понимать под скоростью, если тело движется неравномерно?
Средняя скорость
Введем понятие средней скорости неравномерного движения за интервал времени At.
Средней (по времени) скоростью неравномерного движения точки называется отношение изменения ее координаты Ах к интервалу времени At, в течение которого это изменение произошло:
По форме определение средней скорости неравномерного движения не отличается от определения скорости равномерного движения. Но содержание его будет иным. Теперь отноше- V, м/с
10 8 6 4 2 В А 1 / / / 1 0 5 10 15 Рис. 1.14
20 t, с
2 мин от 2-й
До
Ах „
ние - уже не постоянно. Оно зависит как от значения интервала времени At = t2 - tv так и от выбора начального момента времени tv Например, соглас-но таблице 1 (см. с. 34), средняя ско-рость автомобиля на интервале времени от 2-й до 4-й минуты равна
2130 м- 1050 м,
540 м/мин, на интер-
3-й минуты равна
вале 1840 м - 1050 м = 290 м/мин.
2130 м - 1840 м
ты мы получаем значение
2 мин
Средняя скорость характеризует движение в течение интервала времени At именно в среднем и ничего не говорит о том, как же движется автомобиль в различные моменты времени этого интервала.
"Другой пример. На рисунке 1.14 показан график скорости спринтера при забеге на 200 м. Проанализируем этот забег. Будем считать беговую дорожку прямолинейной. С точки зрения результата нас, конечно, интересует время забега (Ai = 20 с), и поэтому бег спортсмена можно характеризовать средней скоро-стью. Если координатную ось X совместить с беговой дорожкой (за начало отсчета можно принять точку на линии старта), то
Ах = 200 м. Тогда vx = ^ = ^о ™ = М/С- споРтсмена и
его тренера интересуют и детали забега: сколько времени длился разбег, какую скорость развил спортсмен в конце разбега (точка В на графике). Ведь этим и будет определяться время забега. Но скорость спортсмена, соответствующая точке В графика, это уже не средняя скорость, а скорость спортсмена в момент времени t = 4 с.
Мгновенная скорость
Мгновенную скорость естественно было бы определить как скорость тела в данный момент времени или в данной точке траектории. На первый взгляд определение очень простое и понятное. Но так ли это? Как надо, например, понимать следующее утверждение: «Скорость автомобиля в момент начала торможения была 90 км/ч»? Перефразировка этого утверждения«В момент начала торможения автомобиль за 1 ч прошел 90 км » бессмысленна.
Утверждение это, видимо, понимать надо так: если бы начи-ная с указанного момента времени автомобиль не стал бы тор-мозить, а продолжал бы двигаться так же, т. е. с той же быстротой, то за 1 ч он прошел бы 90 км, за 0,5 ч - 45 км, за 1 мин - 1,5 км, за 1 с - 25 м и т. д.
Результат последнего рассуждения весьма важен, ибо показывает, как в принципе можно определить мгновенную скорость автомобиля в момент t начала торможения (или любого другого тела, движущегося прямолинейно и неравномерно). Надо измерить среднюю скорость автомобиля на интервале времени от t до t + At и согласиться, что мгновенная скорость автомобиля в момент времени t приблизительно равна этой средней скорости. Приближение будет тем лучше и, следовательно, мгновенная скорость будет определена тем точнее, чем меньше промежуток времени At. Ведь надо, чтобы на этом промежутке скорость менялась незначительно, а лучше, чтобы этим изменением вообще можно было пренебречь. Последнее замечание заставляет нас брать величину At все меньше и меньше, не ставя ограничения этому уменьшению. В математике это называют «стремление интервала времени At к нулю» и обозначают «At -»0».
За очень малый промежуток времени от t до t + At координата тела изменится также на малую величину Ах. Чтобы найти мгновенную скорость в момент времени t, надо малую величину Ах разделить на малую величину At и посмотреть, чему будет равно частное, если промежуток At неограниченно уменьшать, т. е. стремить к нулю. В математике говорят: «Найти
Ах. .
предел отношения при стремлении At к нулю» и записывают: vr = lim ^ , где знак lim означает «предел».
Af -> 0 А*
Поясним сказанное на примере, когда движение тела описывается аналитически (формулой). Ведь по формуле можно найти положение тела в любой момент времени.
Пусть при движении тела вдоль оси X его координата изменяется согласно уравнению
* = kt ,
где k - постоянный коэффициент.
Примем k = 5 м/с2 и вычислим изменения координаты тела за интервалы времени, равные 0,1, 0,01, 0,001 с..., отсчитываемые, например, с момента времени tt = 1 с:
А*! = 5^ (1,1 с)2-5^ (1с)2 = 1,05 м,
с с
Дх2 = 5^ (1,01 с)2 - 5^ (1 с)2 = 0,1005 м,
с с
Найдем теперь отношения изменений координаты к тем промежуткам времени, за которые эти изменения произошли:
Д*1 1,05 м 1ft _ . А?7 ="0ДТ =10"5м/с"
а*2 0,1005 м 1ПЛС. Щ =-07ГПГ -10,06 м/с,
Еезультаты вычислений приведены в таблице 2.
Таблица 2 At, С Ax, M Ax , ~At " C 0,1 1,05 10,5 0,01 0,1005 10,05 0,001 0,010005 10,005 0,0001 0,00100005 10,0005
Из таблицы видно, что по мере приближения интервала времени At к нулю отношение ~ приближается к определенному
значению (пределу), равному 10 м/с; это и есть скорость в мо-мент времени t1 = 1 с.
Если тело движется по закону х = kt2, то предел ^ при
At -> 0 {lim ^) нетрудно вычислить. В начальный момент
\U-»0 At S
времени t xl = kt2, а в момент t + At х2 = k(t + At)2, следовательно, Ах = х2 - xl = k(t + At)2 - kt2 = 2ktAt + k(At)2.
Тогда для отношения ~ получим:
- = 2kt + kAt.
At
Предел этого отношения при At -> 0 (мгновенная скорость) равен
= lim ~ = 2kt.
х At -> о At
Для данных нашего примера vx = 10 м/с.
Таким образом, для любого момента времени отношение изменения координаты тела к промежутку времени, за который это изменение произошло, стремится к определенному значению при стремлении самого промежутка времени к нулю. Полученный вывод справедлив для любого неравномерного движения.
Мгновенной скоростью при прямолинейном движении называется предел, к которому стремится отношение изменения координаты точки к интервалу времени, за которое это изменение произошло, если интервал времени стремится к нулю.
По определению имеем:
lim^. (1.7.1)
м ->0
т, Ах _ dx
В математике выражение lim - принято обозначать -=- .
ді -»о At dt
Тогда формулу (1.7.1) можно записать так:
... dx = dt ¦
Выражение ^ называется производной координаты по времени.
dx
Иногда производную обозначают иначе: vx(t) = = х" (читается «икс-штрих»).
Когда мы говорим, что скорость в данный момент времени равна 10 м/с, то это означает следующее: если бы начиная с этого момента тело продолжало двигаться равномерно целую секунду, то оно прошло бы 10 м. При равномерном движении средняя скорость за любой момент времени равна мгновенной.
В дальнейшем вы убедитесь, что именно мгновенная, а не средняя скорость играет в механике основную роль.
Как измерить мгновенную скорость І
Измерить мгновенную скорость, осуществив экспериментально предель-
Ах. . „ ныи переход при At -> О, практически невозможно. Используя стробоскопические фотографии (рис. 1.15), можно измерить координаты тела в очень близкие моменты времени и вычислить средние скорости между этими моментами. Но мгновенную скорость так определить нельзя.
Для измерения (разумеется, при-ближенного) используют различные явления, которые зависят от мгновен-ной скорости. Так, в спидометре авто-мобиля гибкий тросик передает вра-щение от ведомого вала коробки пере-дач к маленькому постоянному магниту. Вращение магнита возбуждает электрический ток в катушке, в ре-зультате чего происходит поворот стрелки спидометра.
Чтобы узнать скорость самолета, измеряют давление встречного потока воздуха. В радарах используют изменение частоты радиоволн при отражении от движущихся тел.
При неравномерном движении скорость изменяется. Некоторое представление о движении дает средняя скорость. Но главную роль играет скорость в любой точке в данный момент времени. Это - мгновенная скорость.
Ж
Рис. 1.15
Рисунок с фотографии двух падающих шариков различной массы. Фотографию получили, открывая объектив и чередуя вспышки света каждые 1/30 с. Заметьте, что маленький шарик достигает пола одновременно с большим. Оба шарика начинают падать одновременно.

Еще по теме § 1.7. СРЕДНЯЯ СКОРОСТЬПРИ НЕРАВНОМЕРНОМ ПРЯМОЛИНЕЙНОМДВИЖЕНИИ. МГНОВЕННАЯ СКОРОСТЬ:

  1. 3.2.1 Средняя скорость распространения пламени в основной фазе сгорания.
  2. 3.2.2 Средняя скорость распространения пламени во второй фазе сгорания.
  3. 3.2.3 Средняя скорость распространения пламени в третьей фазе сгорания
  4. 4.2.3 Полуэмпирическая зависимость средней скорости распространения пламени во второй фазе сгорания
  5. 4.2.2 Полуэмпирическая формула средней скорости распространения пламени в основной фазе сгорания
  6. Теорема 27. Третье правило. Если два тела равны по массе, но В движется немного скорее А, то не только А отразится в противоположном направлении, но и В перенесет на А половину своего излишка скорости, и оба будут продолжать движение с равной скоростью в одном направлении.

Скорость в физике означает быстроту перемещения какого-либо объекта в пространстве. Эта величина бывает разной: линейной, угловой, средней, космической и даже сверхсветовой. В число всех существующих разновидностей входит также и мгновенная скорость. Что это за величина, какова ее формула и какие действия необходимы для ее расчета - об этом как раз и пойдет речь в нашей статье.

Мгновенная скорость: сущность и понятие

О том, как определить быстроту перемещения объекта по прямой, известно даже ученику начальных классов: достаточно пройденное расстояние разделить на время, которое было затрачено на такое перемещение. Однако стоит помнить, что результат, полученный таким способом, позволяет судить о Если объект движется неравномерно, то на определенных участках его пути быстрота перемещения может заметно варьироваться. Поэтому порой требуется такая величина как мгновенная скорость. Она позволяет судить о быстроте перемещения материальной точки в любой момент движения.

Мгновенная скорость: формула расчета

Данный параметр равен пределу (обозначается limit, сокращенно lim) отношения перемещения (разнице координат) к промежутку времени, за которое это изменение произошло, при условии, что этот промежуток времени стремится достичь нуля. Это определение можно записать в виде следующей формулы:

v = Δs/Δt при Δt → 0 либо так v = lim Δt→0 (Δs/Δt)

Отметим, что мгновенная скорость есть Если движение происходит по прямой линии, то она меняется лишь по величине, а направление остается постоянным. В противном случае вектор скорости мгновенной направлен по касательной по отношению к траектории перемещения в каждой рассматриваемой точке. Какой смысл несет данный показатель? Мгновенная скорость позволяет выяснить, какое перемещение осуществит объект за единицу времени, если с рассматриваемого момента он движется равномерно и прямолинейно.

В случае никаких сложностей нет: нужно просто найти отношение расстояния к времени, за которое оно было объектом преодолено. В этом случае средняя и мгновенная скорость тела равны. Если же движение происходит непостоянно, то в этом случае следует узнать величину ускорения и определять мгновенную скорость в каждый определенный момент времени. При вертикальном перемещении следует учитывать влияние Мгновенную скорость автомобиля можно определить с помощью радара или спидометра. Следует иметь в виду, что перемещение в некоторых участках пути может принимать отрицательное значение.

Для того чтобы найти ускорение, можно воспользоваться акселерометром либо составить функцию движения и воспользоваться формулой v=v0+a.t. Если перемещение начинается из состояния покоя, то v0 = 0. При расчетах нужно учитывать тот факт, что при торможении тела (уменьшении скорости) величина ускорения будет со знаком "минус". Если объект совершает мгновенная быстрота его перемещения рассчитывается по формуле v= g.t. В этом случае начальная скорость также равна 0.