«Поэтому движущиеся в сильном магнитном поле проводники испытывают сильное торможение из-за взаимодействия токов Фуко с магнитным полем. Что такое вихревые токи

До сих пор мы рассматривали индукционные токи в линейных проводниках. Но индукционные токи будут возникать и в толще сплошных проводников при изменении в них потока вектора магнитной индукции . Они будут циркулировать в веществе проводника (напомним, что линии – замкнуты). Так как электрическое поле вихревое, то и токи называются вихревыми токами, или токами Фуко .

Если медную пластину отклонить от положения равновесия и отпустить так, чтобы она вошла со скоростью υ в пространство между полосами магнита, то пластина практически остановится в момент ее вхождения в магнитное поле (рис. 3.8).

Рис. 3.8 Рис. 3.9

Замедление движения связано с возбуждением в пластине вихревых токов, препятствующих изменению потока вектора магнитной индукции. Поскольку пластина обладает конечным сопротивлением, токи индукции постепенно затухают и пластина медленно двигается в магнитном поле. Если электромагнит отключить, то медная пластина будет совершать обычные колебания, характерные для маятника.

Сила и расположение вихревых токов очень чувствительны к форме пластины. Если заменить сплошную медную пластину «гребенкой» – медной пластиной с пропилами, то вихревые токи в каждой части пластины возбуждаются меньшими потоками. Индукционные токи уменьшаются, уменьшается и торможение (рис. 3.9). Маятник в виде гребенки колеблется в магнитном поле почти без сопротивления. Этим опытом объясняется, почему сердечники электромагнитов, трансформаторов делают не из сплошного куска железа, а набранными из тонких пластин, изолированных друг от друга. В результате уменьшаются токи Фуко и выделяемое ими тепло.

Если взять медный диск диаметром » 5 см и толщиной » 5 мм и уронить его между полюсами электромагнита, то при выключенном магните диск падает с обычным ускорением. При включении магнитного поля » 1 Тл падение диска резко замедляется и его движение напоминает падение тела в очень вязкой среде.

Тормозящее действие тока Фуко используется для создания магнитных успокоителей – демпферов. Если под качающейся в горизонтальной плоскости магнитной стрелкой расположить массивную медную пластину, то возбуждаемые в медной пластине токи Фуко будут тормозить колебание стрелки. Магнитные успокоители такого рода используются в сейсмографах, гальванометрах и других приборах.

Токи Фуко применяются в электрометаллургии для плавки металлов. Металл помещают в переменное магнитное поле, создаваемое током частотой 500 – 2000 Гц. В результате индуктивного разогрева металл плавится, а тигль, в котором он находится, при этом остается холодным. Например, при подведенной мощности 600 кВт тонна металла плавится за 40–50 минут.

Токи Фуко это токи, которые возникают в массивном проводнике, находящемся в переменном магнитном поле. Токи Фуко имеют вихревой характер. Если обычные индукционные токи движутся по тонкому замкнутому проводнику, то вихревые токи замыкаются внутри толщи массивного проводника. Хотя при этом они больше не чем не отличаются от обычных индукционных токов.

Токи Фуко замыкаются в толще проводника в виде круговых контуров маленьких вихрей. Величина этих токов тем выше, чем выше скорость изменения магнитного потока. Это может быть переменное магнитное поле либо сам массивный проводник может, двигается в неизменном магнитном поле.

Направление токов Фуко определяется по правилу Ленца также как и направление обычных токов возникших вследствие электромагнитной индукции. Они всегда направлены встречно потоку, вызвавшему их, и стремятся ему противодействовать.

Можно провести такой эксперимент. Создать постоянный магнитный поток. Например, между двумя постоянными магнитами. И вносить в поле между ними медную или алюминиевую пластину. Будет видно, что пластина движется с усилием. Поскольку в ней при движении возникают токи Фуко, которые взаимодействуют с полем магнитов. Поскольку поле этих токов будет направлено встречно внешнему полю, то они будут отталкиваться друг от друга. Рекомендуется брать именно медную или алюминиевую пластины, так как у этих материалов мало удельное сопротивление. Следовательно сила тока в них будет большей и эффект проявится более явно.

Рисунок 1 — схема опыта

Такое проявление вихревых токов используется в технике. Например, в асинхронном электродвигателе. Статор, которого создает вращающееся магнитное поле. А ротор выполнен в виде массивной болванки. В результате, когда вокруг болванки начинает вращаться магнитное поле, она как бы цепляется за него и тоже начинает вращаться вслед за ним.

Поскольку сопротивление проводника, конечно, то токи, текущие в его толще приводят к нагреву проводника. Это явление используется для плавки металлов в металлургии. Металл помещают в тигель вокруг которого находится индуктор, по которому пропускают переменный ток большой силы. Магнитное поле, которое возникает в контуре, пронизывает металл, который в свою очередь плавится.

Но кроме полезного тепла при плавке токи Фуко приносят и вред в других электрических машинах. Например, в трансформаторах или электродвигателях. В которых энергия магнитного поля не должна расходоваться на тепло. Для борьбы с вихревыми токами ферромагнитные сердечники выполняют шихтованными, то есть набирают из тонких пластин изолированных между собой. При этом магнитный поток должен быть направлен перпендикулярно плоскости пластин. Таким образом, минимизируются потери энергии на нагрев.

Токами Фуко (или вихревыми токами) называют токи, имеющие индукционную природу, которые появляются в массивных проводниках в переменном магнитном поле. Замкнутые цепи вихревых токов появляются в глубине самого проводника. Электросопротивление массивного проводника невелико, следовательно, токи Фуко могут достигнуть большого значения. Сила вихревых токов зависит от формы и свойств материала проводника, направления переменного магнитного поля, скорости, с которой изменяется магнитный поток. Распределение токов Фуко в проводнике может быть очень сложным.

Количество тепла, которое выделяется за $1 с$ токами Фуко пропорционально квадрату частоты изменения магнитного поля.

По закону Ленца, токи Фуко выбирают такие направления, чтобы своим воздействовать причину, которая их вызывает. Значит, если проводник движется в магнитном поле, то он должен испытывать сильное торможение, которое вызвано взаимодействием токов Фуко и магнитного поля.

Приведем пример возникновения оков Фуко. Медный диск диаметром $5 см$, толщиной $6 мм$ заставим падать в узком зазоре между полюсами электромагнита. Если магнитное поле отключено, диск быстро падает. Включим электромагнит. Поле должно быть большим (порядка $0,5Тл$). Падение диска станет медленным и будет напоминать движение в очень вязкой среде.

Применение токов Фуко

Токи Фуко играют полезную роль в роторе асинхронного двигателя, который приводится во вращательное движение магнитным полем. Сама реализация принципа работы асинхронного двигателя требует появления токов Фуко.

Токи Фуко используют при демпфировании подвижных частей гальванометров, сейсмографов и ряда других приборов. Так, на подвижную часть прибора устанавливают пластинку - проводник в виде сектора. Она вводится в промежуток между полюсами сильного постоянного магнита. Когда пластинка движется, в ней появляются токи Фуко, это вызывает торможение системы. Причем торможение появляется только тогда, когда пластинка движется. Следовательно, подобного рода успокаивающее устройство не мешает точному приходу системы в состояние равновесия.

Теплоту, которая выделяется токами Фуко, используют в процессах разогрева. Так, плавка металлов с использованием токов Фуко является весьма выгодной в сравнении с другими методами разогрева. Так называемая индукционная печь представляет собой катушку, по которой идет ток высокой частоты и большой силы. Внутрь катушки помещают проводящее тело, в нем появляются вихревые токи большой интенсивности, которые и разогревают вещество до плавления. Так проводят плавление металлов в вакууме, что ведет к получению материалов высокой чистоты.

При использовании токов Фуко проводят прогрев внутренних металлических частей вакуумных установок с целью их обезгаживания.

Проблемы, которые вызывают вихревые токи. Скин - эффект

Токи Фуко могут играть не только полезную роль. Вихревые токи являются токами проводимости, и часть энергии рассеивают на выделение джоулевой теплоты. Такая энергия, например, в роторе асинхронного двигателя, который изготавливается, обычно из ферромагнетиков, нагревает сердечники, тем самым ухудшаются их характеристики. Для борьбы с таким явлением сердечники производят в виде тонких пластин, которые отделяются тонкими слоями изолятора и устанавливают пластины так, чтобы токи Фуко имели направление поперек пластин. При небольшой толщине пластин вихревые токи имеют малую объемную плотность. С появлением ферритов и веществ с большим магнитосопротивлением стало возможным изготовление сердечников сплошными.

Вихревые токи возникают в проводах, в которых текут переменные токи, причем направление токов Фуко таково, что они ослабляют ток внутри провода и усиливают его около поверхности. Следовательно, быстро изменяющийся ток распределен по сечению провода неравномерно. Такое явление называется скин - эффектом (поверхностным эффектом). Из-за этого явления внутренняя часть проводника становится бесполезной и в цепях с большой частотой используют трубки в качестве проводников. Скин - эффект может применяться для разогрева поверхностного слоя металла, что позволяет использовать это явление для закалки металла, причем, изменяя частоту поля, можно проводить закалку на любой необходимой глубине.

Приближенные формулы, которыми можно описать скин-эффект в однородном цилиндрическом проводнике:

Рисунок 1.

где $R_w$ - эффективное сопротивление проводника радиусом $r$ переменному току с циклической частотой $w$. $R_0$ - сопротивление проводника постоянному току.

где эффективная глубина проникновения переменного тока ($\delta $) (расстояние от поверхности проводника, на котором плотность тока уменьшается в $e=2,7\ $раз в сравнении с плотностью на его поверхности) равна:

$\mu $ - относительная магнитная проницаемость, ${\mu }_0$ - магнитная постоянная, $\sigma $ - удельная электропроводность проводника для постоянного тока. Чем толще проводник, тем существеннее скин - эффект, тем меньше величины $w$ и $\sigma $, при которых его следует учесть.

Пример 1

Задание: В опыте с центробежной машиной к ней прикрепили массивный медный диск, привели этот диск во вращение с большой скоростью. Над диском подвесили (без соприкосновения) магнитную стрелку. Что будет происходить со стрелкой, почему?

Решение:

Магнитная стрелка выступает в роли магнита, который создает магнитное поле, в этом поле вращается медный проводник. Следовательно, в проводнике возникают индукционные токи - токи Фуко. По правилу Ленца вихревые токи, взаимодействуя с магнитным полем, стремятся остановить вращение диска или в соответствии с третьим законом Ньютона увлечь за собой магнитную стрелку. Значит, магнитная стрелка, которая висит над диском, будет поворачиваться вслед за ним и закрутит подвес (нить).

Ответ: Магнитная стрелка будет вращаться, причина - вихревые токи.

Пример 2

Задание: Объясните, почему подземный кабель, по которому передается переменный ток нельзя прокладывать вблизи от металлических газовых и водопроводных труб?

Решение:

Под действием переменного тока вокруг кабеля возникает переменное магнитное поле, если в это поле попадает проводник (металлическая труба), то возникнут индукционные вихревые токи. Эти токи вызывают коррозию металлических труб. Кроме того наличие токов в трубах опасно, так как возникает возможность поражения током.

Пример 3

Задание: Маятник, изготовленный из толстой листовой меди, имеет форму усеченного сектора. Он подвешен на стержне и может совершать свободные колебания вокруг горизонтальной оси в магнитном поле между полюсами сильного электромагнита. В отсутствии магнитного поля маятник совершает колебания практически без затухания. Опишите колебания маятника в магнитном поле электромагнита. Как заставить маятник колебаться почти без затухания в присутствии магнитного поля?

Решение:

Если описанный массивный маятник, осуществляющий колебания, поместить в сильное магнитное поле, то в маятнике возникают токи Фуко. Эти токи по правилу Ленца тормозят движения маятника, амплитуда колебаний уменьшается, и сами колебания скоро прекращаются.

Для того чтобы уменьшить вихревые индукционные токи в маятнике, осуществляющем колебания в магнитном поле, можно его сплошной сектор заменить гребенкой с удлинёнными зубцами. Токи Фуко будут уменьшены, и маятник будет совершать колебания практически без затухания.

Вихревые или цикличные токи имеют как позитивное, так и негативное значение для человека. С одной стороны, они являются причиной утрат энергии в массивном проводнике или катушке. В то же время явление вихревого тока можно применять и с пользой – например,создание индукционных печей. Но обо всем по порядку.

Открытие вихревых токов

Вихревые электрические токи были открыты французским ученым Араго Д.Ф. Ученый экспериментировал с медным диском и стрелкой, которая была намагничена.

Она крутилась вокруг диска, в какой-то момент времени он начал повторять движения стрелки. Тогдашние ученые объяснение явлению не нашли – это странное движение назвали «явление Араго». Загадка ждала своего времени.

Через несколько лет вопросом заинтересовался Максвелл Фарадей, на тот момент, открывший свой знаменитый закон электромагнитной индукции.

Согласно закону, М. Фарадей выдвинул предположение, что движимое магнитное поле имеет влияние на атомную металлическую решетку медного проводника.

Электрический ток, возникший в результате направленного движения электронов, всегда создает магнитное поле по всему периметру проводника. Детально описал вихревые токи, опираясь на работы Араго и Фарадея – физик-экспериментатор Фуко, откуда они и получили свое второе название.

Какова природа вихревых токов?

Замкнутые циклические токи способны возникать в проводниках, в тех случаях, когда магнитное поле вокруг этих проводников не стабильно, то есть постоянно меняющееся во времени или динамично вращающееся.

Таким образом, сила вихревого тока прямо зависит от скорости изменения магнитного потока, пронзающего проводник. Известно, что электроны в проводнике двигаются линейно вследствие разницы потенциалов, таким образом электрический ток прямо направлен.

Токи Фуко проявляют себя иначе и замыкаются прямо в теле проводника, образуя вихреобразные цикличные контуры. Они способны взаимодействовать с магнитным полем, вследствие действия которого они и возникли. (рис 1)

Вихревые токи в проводнике

На рисунке можно хорошо рассмотреть, как интересующие нас токи увеличиваются при повышении уровня индукции (показаны пунктирными направляющими) в середине катушки, которая подключена к переменному току.

Исследуя вихревые токи Фуко русский ученый Ленц сделал вывод, что собственное магнитное поле этих токов не дает магнитному потоку, причиной коих они и являются, изменится. Характер направления силовых линий вихревого электрического тока совпадает с вектором направления индукционного тока.

Значение и применение

В момент движения тела в создаваемых магнитных полях токи Фуко являются причиной физического замедления тела в этих полях. Эта способность давно реализована в конструкции бытового электросчетчика. Суть заключается в том, что замедляется алюминиевый диск, вращающийся под действием магнита. (рис2)

Рисунок изображает диск счетчика электрической энергии, где сплошной стрелкой указано направление вращения самого диска, а пунктирными – вихревые потоки


Эти же взаимодействия помогли реализовать идею создания насоса для перекачки расплавленных металлов. Токи Фуко провоцируют возникновение скин - эффекта. В результате их действия КПД проводника уменьшается, поскольку посредине сечения проводника ток фактические отсутствует, а преобладает на его периферии.

Для уменьшения потерь электроэнергии, особенно при передаче на длительные дистанции, используют многоканальный кабель, каждая жила в котором имеет свою изоляцию. Вихревые токи, а именно индукционные печи, сконструированные на их основе, нашли широкое применение в металлургии.

Их использую для плавки металлов, их перекачивания и закалки поверхности. А также свойства вихревых токов используются для замедления и остановки металлического диска в индукционных тормозах. В современных вычислительных приборах и аппаратах токи Фуко способствуют замедлению движущихся частиц.

В 1824 году французский физик Даниэль Араго впервые наблюдал действие вихревых токов на медный диск, расположенный под магнитной стрелкой на одной оси. При вращении стрелки в диске наводились вихревые токи, приводя его в движение. Это явление получило название «эффекта Араго» в честь его первооткрывателя.

Исследования вихревых токов были продолжены французским физиком Жаном Фуко. Он подробно описал их природу и принцип действия, а также наблюдал явление нагрева ферромагнетика, вращаемого в статическом магнитном поле. Токи новой природы были тоже названы в честь исследователя.

Природа вихревых токов

Токи Фуко могут иметь место при воздействии на проводник переменного магнитного поля, либо при перемещении проводника в статическом магнитном поле. Природа вихревых токов аналогична индукционным, которые возникают в линейных проводах при прохождении через них электрического тока. Направление вихревых токов замкнуто по кругу и противоположно вызывающей их силе.

Токи Фуко в хозяйственной деятельности человека

Самый простой пример проявления токов Фуко в обыденной жизни - их воздействие на магнитопровод обмоточного трансформатора. Из-за воздействия наведенных токов появляется низкочастотная вибрация (трансформатор гудит), способствующая сильному нагреву. В этом случае энергия тратится впустую, а КПД установки падает. Для предотвращения значительных потерь сердечники трансформаторов не изготовляют цельными, а набирают из тонких полос электротехнической стали с низкой удельной электропроводностью. Полосы изолированы между собой электротехническим лаком или слоем окалины. Появление ферритовых элементов позволило выполнять малогабаритные магнитопроводы цельными.

Эффект от действия вихревых токов используется повсеместно в промышленности и машиностроении. Поезда на магнитной подвеске используют токи Фуко для торможения, высокоточные приборы имеют систему демпфирования указывающей стрелки, основанной на действии вихревых токов. В металлургии широко распространены индукционные печи, имеющие целый комплекс преимуществ перед аналогичными установками. В индукционной печи нагреваемый металл можно поместить в безвоздушное пространство, добиваясь его полной дегазации. Индукционная плавка черных металлов также получила широкое распространение в металлургии ввиду высокой экономичности установок.