Температура и средняя кинетическая энергия теплового движения молекул. Идеальный газ

Основное уравнение молекулярно-кинетической теории (МКТ) газов:

(где $n=\frac{N}{V}$ -- концентрация частиц в газе, N -- количество частиц, V- объем газа, $\left\langle E\right\rangle \ $-средняя кинетическая энергия поступательного движения молекул в газе, $\left\langle v_{kv}\right\rangle $- средняя квадратичная скорость, $m_0$- масса молекулы) связывает давление - макропараметр, который довольно легко измерять с микропараметрами -- средней энергией движения отдельной молекулы или, в другом написании, массой частицы и ее скоростью. Однако, измеряя только давление, невозможно определить кинетические энергии частиц в отдельности от концентрации. Следовательно, для того, чтобы в полном объеме мы имели возможность находить микропараметры, необходимо знание еще какой-то физической величины, которая связана с кинетической энергией частиц, составляющих газ. Таковой является термодинамическая температура.

Газовая температура

Для того, чтобы определить, что такое газовая температура, необходимо вспомнить важное свойство, которое говорит о том, что при равновесии средняя кинетическая энергия молекул в смеси газов одна и та же для различных компонент этой смеси. Из этого свойства вытекает то, что если два газа в разных сосудах находятся в тепловом равновесии, то средние кинетические энергии молекул этих газов одинаковы. Это свойство и используем. Кроме того, эксперименты доказали, что для любых газов (количество газов не ограничено), которые находятся в состоянии теплового равновесия, выполняется следующее соотношение:

Учитывая выше сказанное, используем (1) и (2), получим:

Из уравнения (3) получается, что величина $\theta $, которую мы вводим как температуру, измеряется, как и энергия, в Дж. На практике температура в системе СИ измеряется в кельвинах. Следовательно, введем коэффициент, который устранит это противоречие, его размерность будет $\frac{Дж}{К}$, обозначение k равен он $1,38\cdot {10}^{-23}$. Этот коэффициент называют постоянной Больцмана. Так:

\[\theta =kT\ \left(4\right),\]

где T -- термодинамическая температура в кельвинах.

И ее связь со средней кинетической энергией движения молекул газа очевидна:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(5\right).\]

Уравнение (5) показывает, что средняя энергия теплового движения молекул прямо пропорциональна температуре газа. Температуру назвали абсолютной. Ее физический смысл в том, что она определяется средней кинетической энергией приходящейся на одну молекулу. Это с одной стороны. С другой, температура является характеристикой системы в целом. Так уравнение (5) связывает параметры макромира с параметрами микромира. Говорят, что температура является мерой средней кинетической энергии молекул. Мы можем измерить температуру системы, а за тем вычислить энергию молекул.

Абсолютный ноль температур

В состоянии термодинамического равновесия все части системы имеют одинаковую температуру. Температура, при которой средняя кинетическая энергия молекул равна нулю, давление идеального газа равно нулю, называют абсолютным нулем температур. Абсолютная температура не может быть отрицательной.

Пример 1

Задание: Вычислить среднюю кинетическую энергию поступательного движения молекулы кислорода при температуре T=290K. Среднюю квадратичную скорость капельки воды диаметра d=${10}^{-7}м$, взвешенной в воздухе.

Найти среднюю кинетическую энергию движения молекулы кислорода можно используя уравнение, связывающее ее (энергию) и температуру:

\[\left\langle E\right\rangle =\frac{3}{2}kT\left(1.1\right).\]

Поведем расчет, так как все величины заданы в СИ:

\[\left\langle E\right\rangle =\frac{3}{2}\cdot 1,38\cdot {10}^{-23}\cdot {10}^{-7}=6\cdot {10}^{-21}\left(Дж\right).\]

Приступим ко второй части задачи. Капельку воды, которая взвешена в воздухе, можно считать шаром (рис.1). Следовательно, массу капельки найдем как $m=\rho \cdot V=\rho \cdot \pi {\frac{d}{6}}^3.$

Рассчитаем массу капельки воды, из справочных материалов плотность воды при нормальных условиях равна $\rho =1000\frac{кг}{м^3}$:$\ тогда$

Масса капельки очень мала, следовательно, саму капельку можно сравнить с молекулой газа и применить для расчета средней квадратичной скорости капли формулу:

\[\left\langle E\right\rangle =\frac{m{\left\langle v_{kv}\right\rangle }^2}{2}\ \left(1.2\right),\]

где $\left\langle E\right\rangle $ мы уже рассчитали, а из (1.1) очевидно, энергия не зависит от вида газа, зависит только от температуры, следовательно, мы можем использовать полученное значение энергии. Выразим из (1.2) скорость:$\ \cdot $

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\left\langle E\right\rangle }{m}}=\sqrt{\frac{6\cdot 2\left\langle E\right\rangle }{\pi \rho d^3}}=3\sqrt{\frac{2kT}{\pi \rho d^3}}\ \left(1.3\right)\]

Проведем расчёт:

\[\left\langle v_{kv}\right\rangle =\sqrt{\frac{2\cdot 6\cdot {10}^{-21}}{5,2\cdot {10}^{-19}}}=0,15\ \left(\frac{м}{с}\right)\]

Ответ: Средняя кинетическая энергия поступательного движения молекулы кислорода при заданной температуре равна $6\cdot {10}^{-21}\ Дж$. Средняя квадратичная скорость капельки воды при заданных условиях равна 0,15 м/с.

Пример 2

Задание: Средняя энергия поступательного движения молекул идеального газа равна $\left\langle E\right\rangle .\ $Давление газа p. Найдите концентрацию частиц газа.

К нему добавим уравнение связи средней энергии поступательного движения молекул и температуры системы:

\[\left\langle E\right\rangle =\frac{3}{2}kT\ \left(2.2\right)\]

Из (2.1) выразим искомую концентрацию:

Из $\left(2.2\right)\ $выразим $kT$:

Подставим (2.4) в (2.3):

Ответ: Концентрация частиц газа может быть найдена как $n=\frac{3p}{2\left\langle E\right\rangle }$.

Тема: «Температура. Абсолютная температура. Температура - мера средней кинетической энергии молекул. Измерение скоростей молекул газа»


Макроскопитечские параметры

Величины, характеризующие состояние макроскопических тел без учета их молекулярного строения (V, p, t), называют макроскопическими параметрами.


ТЕМПЕРАТУРА

Температура - величина, характеризующая состояние теплового равновесия.

Измерение температуры

Необходимо привести тело в тепловой контакт с термометром;

Термометр должен иметь массу значительно меньше массы тела;

Показания термометра следует отсчитывать после наступления теплового равновесия.

Тепловым равновесием называют такое состояние тел, при котором все макроскопические параметры сколь угодно долго остаются неизменными



ФИЗИЧЕСКИЙ СМЫСЛ ТЕМПЕРАТУРЫ

Температурой называют скалярную величину, характеризующую интенсивность теплового движения молекул изолированной системы в условиях теплового равновесия, пропорциональную средней кинетической энергии поступательного движения молекул.





Решение задач

  • Найти число молекул в 1 кг газа, средняя квадратичная скорость которых при абсолютной температуре Т равна v = √v2.
  • Найти, во сколько раз средняя квадратичная скорость пылинки массой 1,75 ⋅ 10-12 кг, взвешенной в воздухе, меньше средней квадратичной скорости движения молекул воздуха.
  • Определить среднюю кинетическую энергию и концентрацию молекул одноатомного газа при температуре 290 К и давлении 0,8 МПа.

Решение задач

  • При вращении прибора Штерна с частотой 45 с -1 среднее смещение полоски серебра, обусловленное вращением, составляло 1,12 см. Радиусы внутреннего и внешнего цилиндров соответственно равны 1,2 и 16 см. Найти среднюю квадратичную скорость атомов серебра из данных опыта и сравнить ее с теоретическим значением, если температура накала платиновой нити равна 1500 К.

Домашнее задание

  • Параграфы: 60-61

«Физика - 10 класс»

Какие макропараметры используют для описания состояния газа?
Справедливо ли утверждение: «Чем быстрее движутся молекулы газа, тем выше его температура»?


Средняя кинетическая энергия молекул газа при тепловом равновесии.


Возьмём сосуд, разделённый пополам перегородкой, проводящей тепло. В одну половину сосуда поместим кислород, а в другую - водород, имеющие разную температуру. Спустя некоторое время газы будут иметь одинаковую температуру, не зависящую от рода газа, т. е. будут находиться в состоянии теплового равновесия. Для определения температуры выясним, какая физическая величина в молекулярно-кинетической теории обладает таким же свойством.

Из курса физики основной школы известно, что, чем быстрее движутся молекулы, тем выше температура тела. При нагревании газа в замкнутом сосуде давление газа возрастает. Согласно же основному уравнению молекулярно-кинетической теории (9.7) давление газа р прямо пропорционально средней кинетической энергии поступательного движения молекул:

Так как концентрация молекул газа то из уравнения (9.7) получаем или или, согласно формуле (8.8),

При тепловом равновесии, если давление и объём газа массой m постоянны и известны, то средняя кинетическая энергия молекул газа должна иметь строго определённое значение, как и температура.

Можно предположить, что при тепловом равновесии именно средние кинетические энергии молекул всех газов одинаковы .

Конечно, это пока только предположение. Его нужно экспериментально проверить. Практически такую проверку произвести непосредственно невозможно, так как измерить среднюю кинетическую энергию молекул очень трудно. Но с помощью основного уравнения молекулярно-кинетической теории её можно выразить через макроскопические параметры:

Если кинетическая энергия действительно одинакова для всех газов в состоянии теплового равновесия, то и значение давления р должно быть тоже одинаково для всех газов при

Газы в состоянии теплового равновесия.


Рассмотрим следующий опыт. Возьмём несколько сосудов, заполненных различными газами, например водородом, гелием и кислородом. Сосуды имеют определённые объёмы и снабжены манометрами. Это позволяет измерить давление в каждом сосуде. Массы газов известны, тем самым известно число молекул в каждом сосуде.


Приведём газы в состояние теплового равновесия. Для этого поместим их в тающий лёд и подождём, пока не установится тепловое равновесие и давление газов перестанет меняться (рис. 9.4). После этого можно утверждать, что все газы имеют одинаковую температуру 0 °С. Давления газов р, их объёмы V и число молекул N различны. Найдём отношение для водорода. Если, к примеру, водород, количество вещества которого равно 1 моль, занимает объём V H 2 = 0,1 м 3 , то при температуре 0 °С давление оказывается равным р Н 2 = 2,265 10 4 Па. Отсюда

Если взять водород в объёме, равном kV H 2 , то и число молекул будет равно kN A и отношение останется равным 3,76 10 -21 Дж.

Такое же значение отношения произведения давления газа на его объём к числу молекул получается и для всех других газов при температуре тающего льда. Обозначим это отношение через Θ 0 . Тогда

Таким образом, наше предположение оказалось верным.

Средняя кинетическая энергия , а также давление р в состоянии теплового равновесия одинаковы для всех газов, если их объёмы и количества вещества одинаковы или если отношение

Соотношение (9.10) не является абсолютно точным. При давлениях в сотни атмосфер, когда газы становятся весьма плотными, отношение перестаёт быть строго определённым, не зависящим от занимаемых газами объёмов. Оно выполняется для газов, когда их можно считать идеальными.

Если же сосуды с газами поместить в кипящую воду при нормальном атмосферном давлении, то согласно эксперименту отношение по-прежнему будет одним и тем же для всех газов, но больше, чем предыдущее:


Определение температуры.


Можно следовательно, утверждать, что величина Θ растёт с повышением температуры. Более того, Θ ни от чего, кроме температуры, не зависит. Ведь для идеальных газов Θ не зависит ни от рода газа, ни от его объёма или давления, а также от числа частиц в сосуде.

Этот опытный факт позволяет рассматривать величину Θ как естественную меру температуры, как параметр газа, определяемый через другие макроскопические параметры газа.
В принципе можно было бы считать температурой и саму величину Θ и измерять температуру в энергетических единицах - джоулях.
Однако, во-первых, это неудобно для практического использования (температуре 100 °С соответствовало бы очень малое значение - порядка 10 -21 Дж), а во-вторых, и это главное, уже давно температуру принято выражать в градусах.

Температура.

Основное уравнение молекулярно-кинетической теории для идеального газа устанавливает связь легко измеряемого макроскопического параметра - давления - с такими микроскопическими параметрами газа, как средняя кинетическая энергия и концентрация молекул.

Но, измерив только давление газа, мы не можем узнать ни среднее значение кинетической энергии молекул в отдельности, ни их концентрацию. Следовательно, для нахождения микроскопических параметров газа нужны измерения еще какой-то физической величины, связанной со

средней кинетической энергией молекул. Такой величиной в физике является температура.

Из повседневного опыта каждый знает, что бывают тела горячие и холодные. При контакте двух тел, из которых одно мы воспринимаем как горячее, а другое - как холодное, происходят изменения физических параметров как первого, так и второго тела. Например, твердые и жидкие тела обычно при нагревании расширяются. Через некоторое время после установления контакта между телами изменения макроскопических параметров тел прекращаются. Такое состояние тел называется тепловым равновесием. Физический параметр, одинаковый во всех частях системы тел, находящихся в состоянии теплового равновесия, называется температурой тела. Если при контакте двух тел никакие их физические параметры, например объем, давление, не изменяются, то между телами нет теплопередачи и температура тел одинакова.

Термометры.

В повседневной практике наиболее распространен способ измерения температуры с помощью жидкостного термометра.

В устройстве жидкостного термометра используется свойство расширения жидкостей при нагревании. В качестве рабочего тела обычно применяется ртуть, спирт, глицерин. Чтобы измерить температуру тела, термометр приводят в контакт с этим телом; между телом и термометром будет осуществляться теплопередача до установления теплового равновесия. Масса термометра должна быть значительно меньше массы тела, так как в противном случае процесс измерения может существенно изменить температуру тела.

Изменения объема жидкости в термометре прекращаются, когда между телом и термометром прекращается теплообмен. При этом температура жидкости в термометре равна температуре тела.

Отметив на трубке термометра положение конца столба жидкости при помещении термометра в тающий лед, а затем в кипящую воду при нормальном давлении и разделив отрезок между этими отметками на 100 равных частей, получают температурную шкалу по Цельсию. Температура тающего льда принимается равной (рис. 83), кипящей воды - (рис. 84). Изменение длины столба жидкости в термометре на одну сотую длины между отметками 0 и соответствует изменению температуры на

Существенным недостатком способа измерения температуры с помощью жидкостных термометров является то, что шкала температуры при этом оказывается связанной с конкретными физическими свойствами определенного вещества, используемого в качестве рабочего тела в термометре, - ртути, глицерина, спирта. Изменение объема различных жидкостей при одинаковом нагревании оказывается несколько различным. Поэтому ртутный и глицериновый термометры, показания которых совпадают при 0 и 100 °С, дают разные показания при других температурах.

Газы в состоянии теплового равновесия.

Для того чтобы найти более совершенный способ определения температуры, нужно найти такую величину, которая была бы одинаковой для любых тел, находящихся в состоянии теплового равновесия.

Экспериментальные исследования свойств газов показали, что для любых газов, находящихся в состоянии теплового равновесия, отношение произведения давления газа на его объем к числу молекул оказывается одинаковым:

Этот опытный факт позволяет принять величину 0 в качестве естественной меры температуры.

Так как то с учетом основного уравнения молекулярно-кинетической теории (24.2) получим

Следовательно, средняя кинетическая энергия молекул любых газов, находящихся в тепловом равновесии, одинакова. Величина 0 равна двум третям средней кинетической энергии беспорядочного теплового движения молекул газа и выражается в джоулях.

В физике обычно выражают температуру в градусах, принимая, что температура Т в градусах и величина 0 связаны уравнением

где - коэффициент пропорциональности, зависящий от выбора единицы температуры.

Отсюда получаем

Последнее уравнение показывает, что имеется возможность выбрать температурную шкалу, не зависящую от природы газа, используемого в качестве рабочего тела.

Практически измерение температуры на основании использования уравнения (25.4) осуществляется с помощью газового термометра (рис. 85). Устройство его таково: в сосуде постоянного объема находится газ, количество газа остается неизменным. При постоянных значениях объема V и числа молекул давление газа, измеряемое манометром, может служить мерой температуры газа, а значит, и любого тела, с которым газ находится в тепловом равновесии.

Абсолютная шкала температур.

Шкала измерения температуры в соответствии с уравнением (25.4) называется абсолютной шкалой. Ее предложил английский физик У. Кельвии (Томсон) (1824-1907), поэтому шкалу называют также - шкалой Кельвина.

До введения абсолютной шкалы температур в практике получила широкое распространение шкала измерения температуры по Цельсию. Поэтому единица температуры по абсолютной шкале, называемая кельвином выбрана равной одному градусу по шкале Цельсия:

Абсолютный нуль температуры.

В левой части уравнения (25.4) все величины могут иметь только положительные значения или быть равными нулю. Поэтому абсолютная температура Т может быть только положительной или равной нулю. Температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю, называется абсолютным нулем температуры.

Постоянная Больцмана.

Значение постоянной к в уравнении (25.4) можно найти по известным значениям давления и объема газа с известным числом молекул при двух значениях температуры

Как известно, 1 моль любого газа содержит примерно молекул и при нормальном давлении Па занимает объем

Опыты показали, что при надевании любого газа при постоянном объеме от 0 до 100° С его давление возрастает от до Па. Подставляя эти значения в уравнение (25.6), получаем

Коэффициент называется постоянной Больцмана, в честь австрийского физика Людвига Больцмана (1844-1906), одного из создателей молекулярно-кинетической теории.

На практике для описания процессов, происходящих в газах, используют макроскопические параметры - давление р , объем V итемпературу Т . Эти величины характеризуют состояние газа и легко измеряются различными приборами. Между ними устанавливаются соотношения в виде газовых законов, которые мы рассмотрим позже.

Понятие температуры тесно связано с понятием теплового равновесия. Тепловое равновесие - это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура - это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы - термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются известными. По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды - 100 °С.

Английский физик У. Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы - шкалы Кельвина . В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

T = t + 273,15. (7.10)

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой K.

Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Экспериментально доказано, что давление разреженного газа в сосуде постоянного объема V изменяется прямо пропорционально его абсолютной температуре: p ~ T. С другой стороны, опыт показывает, что при неизменных объеме V и температуре T давление газа изменяется прямо пропорционально концентрации n молекул газа, т.е. числу молекул газа в единице объема. Для любого разреженного газа справедливо соотношение:

где k - некоторая универсальная для всех газов постоянная величина. Ее называют постоянной Больцмана, в честь австрийского физика Л. Больцмана, одного из создателей молекулярно-кинетической теории. Постоянная Больцмана - одна из фундаментальных физических констант. Ее численное значение в СИ равно:


k = 1,38·10 -23 Дж/К. (7.12)

Сравнивая соотношения (7.11) и (7.9), можно получить:

Средняя кинетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре. Таким образом, температура есть мера средней кинетической энергии поступательного движения молекул .

Следует обратить внимание на то, что средняя кинетическая энергия поступательного движения молекулы не зависит от ее массы. Броуновская частица, взвешенная в жидкости или газе, обладает такой же средней кинетической энергией, как и отдельная молекула, масса которой на много порядков меньше массы броуновской частицы. Этот вывод распространяется и на случай, когда в сосуде находится смесь химически невзаимодействующих газов, молекулы которых имеют разные массы. В состоянии равновесия молекулы разных газов будут иметь одинаковые средние кинетические энергии теплового движения, определяемые только температурой смеси. Давление смеси газов на стенки сосуда будет складываться из парциальных давлений каждого газа:

В этом соотношении n 1 , n 2 , n 3 , … - концентрации молекул различных газов в смеси. Это соотношение выражает на языке молекулярно-кинетической теории экспериментально установленный в начале XIX столетия закон Дальтона : давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений.