Три двери за одной из них приз. Парадокс Монти Холла

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Решение. Сразу же заметим, данная задача никакого парадокса не содержит. Обычная задача (начальный уровень) на формулу Байеса, которая вытекает из определения условной вероятности.

Формула Байеса

Обозначим через А, событие - вы выиграли авто.

Выдвигаем две гипотезы: H 1 - вы не меняете дверь, и H 2 - меняете дверь.

P(H 1)= 1/3 - априорная (априорная - значит до проведения опыта, ведущий еще не открывал дверь) вероятность гипотезы, что вы меняете дверь.

P H1 (A) - условная вероятность, что вы угадаете дверь, за которой находится авто, если произошла первая гипотеза H 1

P H2 (A) - условная вероятность, что вы угадаете дверь, за которой находится авто, если произошла вторая гипотеза H 2

Находим вероятность события А, если произошла гипотеза H 1 (вероятность того, что вы выиграли автомобиль, если не меняли дверь):

Находим вероятность события А, если произошла гипотеза H 2 (вероятность того, что вы выиграли автомобиль, если меняли дверь):

Таким образом, участнику следует изменить свой первоначальный выбор — в этом случае вероятность его выигрыша будет равна 2 ⁄ 3 .

Статистическая проверка парадокса Монти Холла

Здесь: «стратегия 1» — не менять выбор, «стратегия 2» — изменить выбор. Теоретически, для случая с 3-мя дверями, распределение вероятностей — 33,(3)% и 66,(6)%. При численной симуляции должны бы получаться похожие результаты.

Представьте, что некий банкир предлагает вам выбрать одну из трёх закрытых коробочек. В одной из них 50 центов, в другой - один доллар, в третьей - 10 тысяч долларов. Какую выберете, та вам и достанется в качестве приза.

Вы выбираете наугад, скажем, коробочку №1. И тут банкир (который, естественно, знает, где что) прямо на ваших глазах открывает коробочку с одним долларом (допустим, это №2), после чего предлагает вам поменять изначально выбранную коробочку №1 на коробочку №3.

Стоит ли вам менять своё решение? Увеличатся ли при этом ваши шансы получить 10 тысяч?

Это и есть парадокс Монти Холла — задача теории вероятности, решение которой, на первый взгляд, противоречит здравому смыслу. Над этой задачей люди ломают головы с 1975 года.

Парадокс получил название в честь ведущего популярного американского телешоу «Let’s Make a Deal». В этом телешоу были похожие правила, только участники выбирали двери, за двумя из которых прятались козы, за третьей - Кадиллак.

Большинство игроков рассуждали, что после того, как закрытых дверей осталось две и за одной из них находится Кадиллак, то шансы его получить 50-50.Очевидно, что когда ведущий открывает одну дверь и предлагает вам поменять своё решение, он начинает новую игру. Поменяете вы решение или не поменяете, ваши шансы всё равно будут равны 50 процентам. Так ведь?

Оказывается, что нет. На самом деле, поменяв решение, вы удвоите шансы на успех. Почему?

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье). Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

Попробуем дать «самое понятное» объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется «не изменять своего выбора») или открыть две другие (в старой формулировке это как раз и будет «изменить выбор». Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия «показал козу», никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать «спасибо» ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал «не ту» дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Наконец, самое «наивное» доказательство. Пусть тот, кто стоит на своем выборе, называется «Упрямым», а тот, кто следует указаниям ведущего, зовется «Внимательным». Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

Монти Холл, продюсер и ведущий шоу Let’s Make a Deal с 1963-го по 1991 год.

В 1990 году эта задача и её решение были опубликованы в американском журнале “Parade”. Публикация вызвала шквал возмущённых отзывов читателей, многие из которых обладали научными степенями.

Главная претензия заключалась в том, что не все условия задачи были оговорены, и любой нюанс мог повлиять на результат. Например, ведущий мог предложить поменять решение только в том случае, если игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора в такой ситуации приведёт к гарантированному проигрышу.

Однако за всё время существования телешоу Монти Холла люди, менявшие решение, действительно выигрывали вдвое чаще:

Из 30 игроков, поменявших первоначальное решение, Кадиллак выиграли 18 - то есть 60%

Из 30 игроков, которые остались при своём выборе, Кадиллак выиграли 11 - то есть примерно 36%

Так что приведённые в решении рассуждения, какими бы нелогичными они не казались, подтверждаются практикой.

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 1 %.

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода Более формально сценарий игры может быть описан c помощью дерева принятия решений. В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Если же вам непонятно все равно, плюньте на формулы и просто проверьте всё статистически . Еще один вариант объяснения:

  • Игрок, чья стратегия заключалась бы в том, чтобы каждый раз менять выбранную дверь, будет проигрывать только в том случае, если он изначально выбирает дверь, за которой находится автомобиль.
  • Поскольку вероятность выбрать автомобиль с первой попытки составляет один к трём (или 33%), то шанс не выбрать автомобиль, если игрок будет менять свой выбор, также равен один к трём (или 33%).
  • Это означает, что игрок, который использовал стратегию менять дверь, выиграет с вероятностью 66 % или два к трём.
  • Это удвоит шансы на выигрыш игрока, чья стратегия - каждый раз не менять свой выбор.

Всё ещё не верите? Предположим, что вы выбрали дверь №1. Здесь представлены все возможные варианты того, что может произойти в этом случае.

Формулировка

Наиболее популярной является задача с дополнительным условием № 6 из таблицы - участнику игры заранее известны следующие правила:

  • автомобиль равновероятно размещен за любой из 3 дверей;
  • ведущий в любом случае обязан открыть дверь с козой и предложить игроку изменить выбор, но только не дверь, которую выбрал игрок;
  • если у ведущего есть выбор, какую из 2 дверей открыть, он выбирает любую из них с одинаковой вероятностью.

В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.

Разбор

При решении этой задачи обычно рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны 1/2, вне зависимости от первоначального выбора.

Вся суть в том, что своим первоначальным выбором участник делит двери: выбранная A и две другие - B и C . Вероятность того, что автомобиль находится за выбранной дверью = 1/3, того, что за другими = 2/3.

Для каждой из оставшихся дверей сложившаяся ситуация описывается так:

P(B) = 2/3*1/2 = 1/3

P(C) = 2/3*1/2 = 1/3

Где 1/2 - условная вероятность нахождения автомобиля именно за данной дверью при условии, что автомобиль не за дверью, выбранной игроком.

Ведущий, открывая одну из оставшихся дверей, всегда проигрышную, сообщает тем самым игроку ровно 1 бит информации и меняет условные вероятности для B и C соответственно на "1" и "0".

В результате выражения принимают вид:

P(B) = 2/3*1 = 2/3

Таким образом, участнику следует изменить свой первоначальный выбор - в этом случае вероятность его выигрыша будет равна 2/3.

Одним из простейших объяснений является следующее: если вы меняете дверь после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь (тогда ведущий откроет вторую проигрышную и вам останется поменять свой выбор чтобы победить). А изначально выбрать проигрышную дверь можно 2 способами (вероятность 2/3), т.е. если вы меняете дверь, вы выигрываете с вероятностью 2/3.

Этот вывод противоречит интуитивному восприятию ситуации большинством людей , поэтому описанная задача и называется парадоксом Монти Холла , т.е. парадоксом в бытовом смысле.

А интуитивное восприятие таково: открывая дверь с козой, ведущий ставит перед игроком новую задачу, никак не связанную с предыдущим выбором - ведь коза за открытой дверью окажется независимо от того, выбрал игрок перед этим козу или автомобиль. После того, как третья дверь открыта, игроку предстоит сделать выбор заново - и выбрать либо ту же дверь, которую он выбрал раньше, либо другую. То есть, при этом он не меняет свой предыдущий выбор, а делает новый. Математическое же решение рассматривает две последовательные задачи ведущего, как связанные друг с другом.

Однако следует брать во внимание тот фактор из условия, что ведущий откроет дверь с козой именно из двух оставшихся, а не дверь, выбранную игроком. Следовательно, оставшаяся дверь имеет больше шансов на автомобиль, так как она не была выбрана ведущим. Если рассмотреть тот случай, когда ведущий, зная, что за выбранной игроком дверью находится коза, все же откроет эту дверь, этим самым он нарочно уменьшит шансы игрока выбрать правильную дверь, т.к. вероятность правильного выбора будет уже 1/2. Но подобного рода игра будет уже по другим правилам.

Дадим еще одно объяснение. Предположим, что вы играете по описанной выше системе, т.е. из двух оставшихся дверей вы всегда выбираете дверь, отличную от вашего первоначального выбора. В каком случае вы проиграете? Проигрыш наступит тогда, и только тогда, когда с самого начала вы выбрали дверь, за которой находится автомобиль, ибо впоследствии вы неизбежно перемените свое решение в пользу двери с козой, во всех остальных случаях вы выиграете, т.е., если с самого начала ошиблись с выбором двери. Но вероятность с самого начала выбрать дверь с козой 2/3, вот и получается, что для победы нужна ошибка, вероятность которой в два раза больше правильного выбора.

Упоминания

  • В фильме Двадцать одно преподаватель, Мики Роса, предлагает главному герою, Бену, решить задачу: за тремя дверьми два самоката и один автомобиль, необходимо угадать дверь с автомобилем. После первого выбора Мики предлагает изменить выбор. Бен соглашается и математически аргументирует свое решение. Так он непроизвольно проходит тест в команду Мики.
  • В романе Сергея Лукьяненко «Недотёпа » главные герои при помощи такого приёма выигрывают карету и возможность продолжить своё путешествие.
  • В телесериале «4исла » (13 эпизод 1 сезона «Man Hunt») один из главных героев, Чарли Эппс, на популярной лекции по математике объясняет парадокс Монти Холла, наглядно иллюстрируя его с помощью маркерных досок, на обратных сторонах которых нарисованы козы и автомобиль. Чарли действительно находит автомобиль, изменив выбор. Однако следует отметить, что он проводит всего один эксперимент, в то время как преимущество стратегии смены выбора является статистическим, и для корректной иллюстрации следует проводить серию экспериментов.
  • Парадокс Монти Холла обсуждается в дневнике героя повести Марка Хэддона «Загадочное ночное убийство собаки».
  • Парадокс Монти Холла проверялся Разрушителями Легенд

См. также

  • Парадокс Бертрана (англ.)

Ссылки

  • Интерактивный прототип: для тех, кто хочет надурить (генерация происходит после первого выбора)
  • Интерактивный прототип: реальный прототип игры (генерация карточек происходит до выбора, работа прототипа прозрачна)
  • Объясняющий видеоролик на сайте Smart Videos .ru
  • Weisstein, Eric W. Парадокс Монти Холла (англ.) на сайте Wolfram MathWorld .
  • Парадокс Монти Холла на сайте телешоу Let’s Make a deal
  • Отрывок из книги С.Лукьяненко , в котором используется парадокс Монти Холла
  • Ещё одно решение по Байесу Ещё одно решение по Байесу на форуме Новосибирского Государственного Университета

Литература

  • Гмурман В.Е. Теория вероятностей и математическая статистика, - М .: Высшее образование. 2005
  • Gnedin, Sasha "The Mondee Gills Game." журнал The Mathematical Intelligencer , 2011 http://www.springerlink.com/content/8402812734520774/fulltext.pdf
  • Parade Magazine от 17 февраля .
  • vos Savant, Marilyn. Колонка «Ask Marilyn», журнал Parade Magazine от 26 февраля .
  • Bapeswara Rao, V. V. and Rao, M. Bhaskara. «A three-door game show and some of its variants». Журнал The Mathematical Scientist , 1992, № 2.
  • Tijms, Henk. Understanding Probability, Chance Rules in Everyday Life . Cambridge University Press, New York, 2004. (ISBN 0-521-54036-4)

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Парадокс Монти Холла" в других словарях:

    В поисках автомобиля, игрок выбирает дверь 1. Тогда ведущий открывает 3 ю дверь, за которой находится коза, и предлагает игроку изменить свой выбор на дверь 2. Стоит ли ему это делать? Парадокс Монти Холла одна из известных задач теории… … Википедия

    - (Парадокс галстуков) известный парадокс, похожий на задачу о двух конвертах, также демонстрирующий особенности субъективного восприятия теории вероятностей. Суть парадокса: двое мужчин дарят друг другу на Рождество галстуки, купленные их… … Википедия

Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание гипотетической игры, основанной на американском телешоу «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine, звучит следующим образом:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль, за двумя другими дверями — козы. Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где — козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Хотя данная формулировка задачи является наиболее известной, она несколько проблематична, поскольку оставляет некоторые важные условия задачи неопределенными. Ниже приводится более полная формулировка.

При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен. Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей, поэтому описанная задача и называется парадоксом Монти Холла.

Словесное решение

Правильным ответом к этой задаче является следующее: да, шансы выиграть автомобиль увеличиваются в 2 раза, если игрок будет следовать совету ведущего и изменит свой первоначальный выбор.

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье).

Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

Попробуем дать "самое понятное" объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется "не изменять своего выбора") или открыть две другие (в старой формулировке это как раз и будет "изменить выбор". Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия "показал козу", никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать "спасибо" ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал "не ту" дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Наконец, самое "наивное" доказательство. Пусть тот, кто стоит на своем выборе, называется "Упрямым", а тот, кто следует указаниям ведущего, зовется "Внимательным". Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

Ключи к пониманию

Несмотря на простоту объяснения этого явления, множество людей интуитивно полагают, что вероятность выигрыша не меняется при изменении игроком своего выбора. Обычно невозможность изменения вероятности выигрыша мотивируется тем, что при вычислении вероятности происшедшие в прошлом события не имеют значения, как это происходит, например, при подбрасывании монетки — вероятность выпадения орла или решки не зависит от того, сколько раз до этого выпал орёл или решка. Поэтому многие считают, что в момент выбора игроком одной двери из двух уже не имеет значения, что в прошлом имел место выбор одной двери из трёх, и вероятность выиграть автомобиль одинаковая как при изменении выбора, так и при оставлении первоначального выбора.

Однако, хотя такие соображения верны в случае подбрасывания монетки, они верны не для всех игр. В данном случае должно быть проигнорировано открытие двери ведущим. Игрок по существу выбирает между той одной дверью, которую он выбрал сначала, и остальными двумя — открытие одной из них служит лишь для отвлечения внимания игрока. Известно, что имеется один автомобиль и две козы. Первоначальный выбор игроком одной из дверей делит возможные исходы игры на две группы: либо автомобиль находится за дверью, выбранной игроком (вероятность этого 1/3), либо за одной из двух других (вероятность этого 2/3). При этом уже известно, что в любом случае за одной из двух оставшихся дверей находится коза, и, открывая эту дверь, ведущий не даёт игроку никакой дополнительной информации о том, что находится за выбранной игроком дверью. Таким образом, открытие ведущим двери с козой не меняет вероятности (2/3) того, что автомобиль находится за одной из оставшихся дверей. А поскольку уже открытую дверь игрок не выберет, то вся эта вероятность оказывается сосредоточена в том событии, что автомобиль находится за оставшейся закрытой дверью.

Более интуитивно понятное рассуждение: Пусть игрок действует по стратегии «изменить выбор». Тогда проиграет он только в том случае, если изначально выберет автомобиль. А вероятность этого — одна треть. Следовательно, вероятность выигрыша: 1-1/3=2/3. Если же игрок действует по стратегии «не менять выбор», то он выиграет тогда и только тогда, когда изначально выбрал автомобиль. А вероятность этого — одна треть.

Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал "не ту" дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Другая частая причина трудного понимания решения этой задачи состоит в том, что нередко люди представляют себе немного другую игру — когда заранее неизвестно, будет ли ведущий открывать дверь с козой и предлагать игроку изменить свой выбор. В этом случае игрок не знает тактики ведущего (то есть, по существу, не знает всех правил игры) и не может сделать оптимальный выбор. Например, если ведущий будет предлагать смену варианта лишь в случае, когда игрок изначально выбрал дверь с автомобилем, то, очевидно, игрок должен всегда оставлять первоначальное решение без изменения. Именно поэтому важно иметь в виду точную формулировку задачи Монти Холла. (при таком варианте ведущий с разными стратегиями может добиться любой вероятности между дверями, в общем(среднем) случае будет 1/2 на 1/2).

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 0.01 %.

Дерево принятия решений

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода

Более формально сценарий игры может быть описан c помощью дерева принятия решений.

В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Суммарная вероятность того, что изменение выбора приведёт к выигрышу, эквивалентна сумме вероятностей первых двух исходов, то есть


Соответственно, вероятность того, что отказ от изменения выбора приведёт к выигрышу, равна

Проведение похожего эксперимента

Существует простой способ убедиться в том, что изменение первоначального выбора приводит к выигрышу в двух случаях из трёх в среднем. Для этого можно сымитировать игру, описанную в задаче Монти Холла, с помощью игральных карт. Один человек (раздающий карты) при этом играет роль ведущего Монти Холла, а второй — роль игрока. Для игры берутся три карты, из которых одна изображает дверь с автомобилем (например, туз пик), а две других, одинаковых (например, две красные двойки) — двери с козами.

Ведущий выкладывает три карты рубашкой вверх, предлагая игроку взять одну из карт. После того, как игрок выберет карту, ведущий смотрит в две оставшиеся карты и открывает красную двойку. После этого открываются карты, оставшиеся у игрока и у ведущего, и если выбранная игроком карта — туз пик, то записывается очко в пользу варианта, когда игрок не меняет свой выбор, а если у игрока оказывается красная двойка, а у ведущего остаётся туз пик, то записывается очко в пользу варианта, когда игрок меняет свой выбор. Если провести множество таких раундов игры, то соотношение между очками в пользу двух вариантов достаточно хорошо отразит соотношение вероятностей этих вариантов. При этом оказывается, что число очков в пользу смены первоначального выбора примерно в два раза больше.

Такой эксперимент позволяет не только убедиться в том, что вероятность выигрыша при изменении выбора в два раза больше, но и хорошо иллюстрирует, почему так происходит. В тот момент, когда игрок выбрал себе карту, уже определено, находится ли в его руке туз пик или нет. Дальнейшее открытие ведущим одной из своих карт не меняет ситуации — игрок уже держит карту в руке, и она остаётся там независимо от действий ведущего. Вероятность же для игрока выбрать туз пик из трёх карт равна, очевидно, 1/3, и, таким образом, вероятность его не выбрать (и тогда игрок выиграет, если изменит первоначальный выбор) равна 2/3.

Упоминание

В фильме Двадцать одно преподаватель, Мики Роса, предлагает главному герою, Бену, решить задачку: за тремя дверьми два самоката и один автомобиль, необходимо угадать дверь, чтобы выиграть автомобиль. После первого выбора Мики предлагает изменить выбор. Бен соглашается и математически аргументирует свое решение. Так он непроизвольно проходит тест в команду Мики.

В романе Сергея Лукьяненко «Недотепа» главные герои при помощи такого приема выигрывают карету и возможность продолжить своё путешествие.

В телесериале «4исла» (13 эпизод 1 сезона «Man Hunt») один из главных героев, Чарли Эппс, на популярной лекции по математике объясняет парадокс Монти Холла, наглядно иллюстрируя его с помощью маркерных досок, на обратных сторонах которых нарисованы козы и автомобиль. Чарли действительно находит автомобиль, изменив выбор. Однако следует отметить, что он проводит всего один эксперимент, в то время как преимущество стратегии смены выбора является статистическим, и для корректной иллюстрации следует проводить серию экспериментов.

http://dic.academic.ru/dic.nsf/ruwiki/36146

Решение которой, на первый взгляд, противоречит здравому смыслу.

Энциклопедичный YouTube

  • 1 / 5

    Задача формулируется как описание игры , основанной на американской телеигре «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространённая формулировка этой задачи, опубликованная в 1990 году в журнале Parade Magazine , звучит следующим образом:

    Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трёх дверей. За одной из дверей находится автомобиль , за двумя другими дверями - козы . Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас - не желаете ли вы изменить свой выбор и выбрать дверь номер 2? Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

    После публикации немедленно выяснилось, что задача сформулирована некорректно: не все условия оговорены. Например, ведущий может придерживаться стратегии «адский Монти»: предлагать сменить выбор тогда и только тогда, когда игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора будет вести в такой ситуации к гарантированному проигрышу (см. ниже).

    Наиболее популярной является задача с дополнительным условием - участнику игры заранее известны следующие правила:

    • автомобиль равновероятно размещён за любой из трёх дверей;
    • ведущий в любом случае обязан открыть дверь с козой (но не ту, которую выбрал игрок) и предложить игроку изменить выбор;
    • если у ведущего есть выбор, какую из двух дверей открыть, он выбирает любую из них с одинаковой вероятностью.

    В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.

    Разбор

    Для стратегии выигрыша важно следующее: если вы меняете выбор двери после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь. Это произойдёт с вероятностью 2 ⁄ 3 , так как изначально выбрать проигрышную дверь можно 2 способами из 3.

    Но часто при решении этой задачи рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны ½ , вне зависимости от первоначального выбора. Но это неверно: хотя возможностей выбора действительно остаётся две, эти возможности (с учётом предыстории) не являются равновероятными! Это так, поскольку изначально все двери имели равные шансы быть выигрышными, но затем имели разные вероятности быть исключёнными.

    Для большинства людей этот вывод противоречит интуитивному восприятию ситуации, и благодаря возникающему несоответствию между логическим выводом и ответом, к которому склоняет интуитивное мнение, задача и называется парадоксом Монти Холла .

    Ещё более наглядной ситуация с дверями становится, если представить что дверей не 3 а, скажем 1000, и после выбора игрока ведущий убирает 998 лишних, оставляя 2 двери: ту, которую выбрал игрок и ещё одну. Представляется более очевидным, что вероятности нахождения приза за этими дверьми различны, и не равны ½ . Если мы меняем дверь, то проигрываем только в том случае, если сначала выбрали призовую дверь, вероятность чего 1:1000. Выигрываем же мы в том случае, если наш изначальный выбор был не правильным, а вероятность этого - 999 из 1000. В случае с 3 дверьми логика сохраняется, но вероятность выигрыша при смене решения соответственно ниже, а именно 2 ⁄ 3 .

    Другой способ рассуждения - замена условия эквивалентным. Представим, что вместо осуществления игроком первоначального выбора (пусть это будет всегда дверь № 1) и последующего открытия ведущим двери с козой среди оставшихся (то есть всегда среди № 2 и № 3), представим, что игроку нужно угадать дверь с первой попытки, но ему предварительно сообщается, что за дверью № 1 автомобиль может быть с исходной вероятностью (33 %), а среди оставшихся дверей указывается за какой из дверей автомобиля точно нет (0 %). Соответственно, на последнюю дверь всегда будет приходиться 67 %, и стратегия её выбора предпочтительна.

    Другое поведение ведущего

    Классическая версия парадокса Монти Холла утверждает, что ведущий обязательно предложит игроку сменить дверь, независимо от того, выбрал тот машину или нет. Но возможно и более сложное поведение ведущего. В этой таблице кратко описаны несколько вариантов поведения.

    Возможное поведение ведущего
    Поведение ведущего Результат
    «Адский Монти»: ведущий предлагает сменить, если дверь правильная . Смена всегда даст козу.
    «Ангельский Монти»: ведущий предлагает сменить, если дверь неправильная . Смена всегда даст автомобиль.
    «Несведущий Монти» или «Монти Бух»: ведущий нечаянно падает, открывается дверь, и оказывается, что за ней не машина. Другими словами, ведущий сам не знает, что за дверями, открывает дверь полностью наугад, и только случайно за ней не оказалось автомобиля . Смена даёт выигрыш в ½ случаев.
    Именно так устроено американское шоу «Deal or No Deal» - правда, случайную дверь открывает сам игрок, и если за ней нет автомобиля, ведущий предлагает сменить.
    Ведущий выбирает одну из коз и открывает её, если игрок выбрал другую дверь. Смена даёт выигрыш в ½ случаев.
    Ведущий всегда открывает козу. Если выбран автомобиль, левая коза открывается с вероятностью p и правая с вероятностью q =1−p . Если ведущий открыл левую дверь, смена даёт выигрыш с вероятностью 1 1 + p {\displaystyle {\frac {1}{1+p}}} . Если правую - 1 1 + q {\displaystyle {\frac {1}{1+q}}} . Однако испытуемый никак не может повлиять на вероятность того, что будет открыта правая дверь - независимо от его выбора это произойдёт с вероятностью 1 + q 3 {\displaystyle {\frac {1+q}{3}}} .
    То же самое, p =q = ½ (классический случай). Смена даёт выигрыш с вероятностью 2 ⁄ 3 .
    То же самое, p =1, q =0 («бессильный Монти» - усталый ведущий стоит у левой двери и открывает ту козу, которая ближе). Если ведущий открыл правую дверь, смена даёт гарантированный выигрыш. Если левую - вероятность ½ .
    Ведущий открывает козу всегда, если выбран автомобиль, и с вероятностью ½ в противном случае. Смена даёт выигрыш с вероятностью ½ .
    Общий случай: игра повторяется многократно, вероятность спрятать автомобиль за той или иной дверью, а также открыть ту или иную дверь произвольная, однако ведущий знает, где автомобиль, и всегда предлагает смену, открывая одну из коз. Равновесие Нэша : ведущему выгоднее всего именно парадокс Монти Холла в классическом виде (вероятность выигрыша 2 ⁄ 3 ). Машина прячется за любой из дверей с вероятностью ⅓ ; если есть выбор, открываем любую козу наугад.
    То же самое, но ведущий может не открывать дверь вообще. Равновесие Нэша : ведущему выгодно не открывать дверь, вероятность выигрыша ⅓ .

    См. также

    Примечания

    1. Tierney, John (July 21, 1991), "Behind Monty Hall"s Doors: Puzzle, Debate and Answer? ", The New York Times , . Проверено 18 января 2008.