Вывод формулы дифракционной решетки. Формула дифракционной решетки

Продолжая рассуждения для пяти, шести щелей и т. д., можно установить следующее правило: при наличии щелей между двумя соседними максимумами образуется минимумов; разность хода лучей от двух соседних щелей для максимумов должна равняться целому числу X, а для минимумов - Дифракционный спектр от щелей имеет вид, показанный на рис Дополнительные максимумы, расположенные между двумя соседними минимумами, создают на экране весьма слабую освещенность (фон).

Основная часть энергии световой волны, прошедшей через дифракционную решетку, перераспределяется между главными максимумами, образующимися в направлениях где 3, называется «порядком» максимума.

Очевидно, чем больше число щелей тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интенсивными и более острыми будут максимумы.

Если свет, падающий на дифракционную решетку, состоит из двух монохроматических излучений с длинами волн и их главные максимумы расположатся в различных местах экрана. Для очень близких друг к другу длин волн (одноцветные излучения) максимумы на экране могут получиться настолько близко друг к другу, что сольются в одну общую светлую полосу (рис. IV.27, б). Если же вершина одного максимума совпадает или находится дальше (а) ближайшего минимума второй волны, то по распределению освещенности на экране можно уверенно установить наличие двух волн (или, как говорят, «разрешить» эти волны).

Выведем условие разрешимости двух волн: максимум (т. е. максимум порядка) волны получится, согласно формуле (1.21), под углом удовлетворяющим условию Предельное условие разрешимости требует, чтобы под этим же углом получился

минимум волны ближайшей к его максимуму (рис. IV.27, в). Согласно сказанному выше, для получения ближайшего минимума к разности хода следует прибавить дополнительно Таким образом, условие совпадения углов под которыми получаются максимум и минимум приводит к соотношению

Если больше, чем произведение числа щелей на порядок спектра то максимумы не будут разрешаться. Очевидно, если два максимума не разрешаются в спектре порядка, то они могут быть разрешены в спектре более высоких порядков. Согласно выражению (1.22), чем больше число интерферирующих между собой пучков и чем больше разность хода А между ними тем более близкие волны могут быть разрешены.

У дифракционной решетки т. е. число щелей, велико, но порядок спектра который можно использовать для измерительных целей, мал; у интерферометра Майкельсона, наоборот, число интерферирующих пучков равно двум, но разность хода между ними, зависящая от расстояний до зеркал (см. рис. IV. 14), велика, поэтому порядок наблюдаемого спектра измеряется очень большими числами.

Угловое расстояние между двумя соседними максимумами двух близких волн зависит от порядка спектра и периода решетки

Период решетки можно заменить на число щелей приходящихся на единицу длины решетки:

Выше предполагалось, что лучи, падающие на дифракционную решетку, перпендикулярны ее плоскости. При наклонном падении лучей (см. рис. IV.22, б) нулевой максимум будет смещен и получится в направлении Допустим, что максимум порядка получается в направлении т. е. разность хода лучей и равна Тогда Так как при малых углы

Близки друг к другу по величине, то следовательно,

где есть угловое отклонение максимума от нулевого. Сравним эту формулу с выражением (1.21), которую запишем в виде так как то угловое отклонение при наклонном падении оказывается больше, чем при перпендикулярном падении лучей. Это соответствует уменьшению периода решетки в а раз. Следовательно, при больших углах падения а можно получить дифракционные спектры от коротковолнового (например, рентгеновского) излучения и измерить их длины волн.

Если плоская световая волна проходит не через щели, а через круглые отверстия малого диаметра (рис. IV.28), то дифракционный спектр (на плоском экране, расположенном в фокальной плоскости линзы) представляет собой систему чередующихся темных и светлых колец. Первое темное кольцо получается под углом удовлетворяющим условию

У второго темного кольца На долю центрального светлого круга, называемого пятном Эйри, приходится около 85% всей мощности излучения, прошедшей через отверстие и линзу; остальные 15% распределяются между светлыми кольцами, окружающими это пятно. Размеры пятна Эйри зависят от и фокусного расстояния линзы.

Дифракционные решетки, которые рассматривались выше, состояли из чередующихся «щелей», полностью пропускающих световую волну, и «непрозрачных полосок», которые полностью поглощают или отражают падающее на них излучение. Можно сказать, что в таких решетках коэффициент пропускания световой волны имеет только два значения: на протяжении щели он равен единице, а на протяжении непрозрачной полоски - нулю. Поэтому на границе межд щелью и полоской коэффициент пропускания скачкообразно изменяется от единицы до нуля.

Однако можно изготовить дифракционные решетки и с другим распределением коэффициента пропускания. Например, если на прозрачную пластинку (или пленку) нанести поглощающий слой с периодически изменяющейся толщиной, то вместо чередования совершенно

прозрачных щелей и совершенно непрозрачных полосок можно получить дифракционную решетку с плавным изменением коэффициента пропускания (в направлении, перпендикулярном щелям или полоскам). Особый интерес представляют решетки, у которых коэффициент пропускания изменяется по синусоидальному закону. Дифракционный спектр таких решеток состоит не из множества максимумов (как это показано для обычных решеток на рис. IV.26), а только из центрального максимума и двух симметрично расположенных максимумов первого порядка

Для сферической волны можно изготовить дифракционные решетки, состоящие из множества концентрических кольцевых щелей, разделенных непрозрачными кольцами. Можно, например, на стеклянную пластинку (или на прозрачную пленку) нанести тушью концентрические кольца; при этом центральный круг, охватывающий центр этих колец, может быть либо прозрачным, либо затушеванным. Такие дифракционные решетки называются «зонными пластинками» или решетками. У дифракционных решеток, состоящих из прямолинейных щелей и полосок, для получения отчетливой интерференционной картины было необходимо постоянство ширины щели и периода решетки; у зонных пластинок для этой цели должны быть рассчитаны необходимые радиусы и толщины колец. Зонные решетки также могут быть изготовлены с плавным, например синусоидальным, изменением коэффициента пропускания вдоль радиуса.

Дифракционная решетка — оптическое устройство, представляющее собой совокупность большого числа параллельных, обычно равноотстоящих друг от друга, щелей.

Дифракционную решетку можно получить нанесением непрозрачных царапин (штрихов) на стеклянную пластину. Непроцарапанные места — щели — будут пропускать свет; штрихи, соответствующие промежутку между щелями, рассеивают и не пропускают света. Сечение такой дифракционной решетки (а ) и ее условное обозначение (б) показаны на рис. 19.12. Суммарную ширину щели а и промежутка б между щелями называют постоянной или периодом дифракционной решетки:

с = а + б. (19.28)

Если на решетку падает пучок когерентных волн, то вторичные волны, идущие по всевозможным направлениям, будут интерферировать, формируя дифракционную картину.

Пусть на решетку нормально падает плоскопараллельный пучок когерентных волн (рис. 19.13). Выберем некоторое направление вторичных волн под углом a относительно нормали к решетке. Лучи, идущие от крайних точек двух соседних щелей, имеют разность хода d = А"В". Такая же разность хода будет для вторич-ных волн, идущих от соответственно расположенных пар точек соседних щелей. Если эта разность хода кратна целому числу длин волн, то при интерференции возникнут главные максимумы, для которых выполняется условие ÷А"В ¢÷= ± k l, или

с sin a = ± k l, (19.29)

где k = 0,1,2,... — порядок главных максимумов. Они расположены симметрично относительно центрального (k = 0, a = 0). Равенство (19.29) является основной формулой дифракционной решетки.

Между главными максимумами образуются минимумы (добавочные), число которых зависит от числа всех щелей решетки. Выведем условие для добавочных минимумов. Пусть разность хода вторичных волн, идущих под углом a от соответственных тoчек соседних щелей, равна l/N, т. е.

d = с sin a= l/N, (19.30)

где N — число щелей дифракционной решетки. Этой разности хода 5 [см. (19.9)] отвечает разность фаз Dj= 2 p/N.

Если считать, что вторичная волна от первой щели имеет в момент сложения с другими волнами нулевую фазу, то фаза волны от второй щели равна 2 p/N, от третьей — 4 p/N, от четвертой — 6p/N и т. д. Результат сложения этих волн с учетом фазового различия удобно получить с помощью векторной диаграммы: сумма N одинаковых векторов напряженности электрического поля, угол (разность фаз) между любыми соседними из которых есть 2 p/N, равна нулю. Это означает, что условие (19.30) соответствует минимуму. При разности хода вторичных волн от соседних щелей d = 2(l/N) илиразности фаз Dj = 2(2p/N) будет также получен минимум интерференции вторичных волн, идущих от всех щелей, и т. д.


В качестве иллюстрации на рис. 19.14 изображена векторная диаграмма, соответствующая дифракционной решетке, состоящей из шести щелей: и т. д. — векторы напряженности электрической составляющей электромагнитных волн от первой, второй и т. д. щелей. Возникающие при интерференции пять добавочных минимумов (сумма векторов равна нулю) наблюдаются при разности фаз волн, приходящих от соседних щелей, в 60° (а ), 120° (б), 180° (в), 240° (г) и 300° (д).

Рис. 19.14

Так, можно убедиться, что между центральным и каждым первым главным максимумами имеется N -1 добавочных минимумов, удовлетворяющих условию

с sin a = ± l/N ; 2l/N, ..., ± (N - 1)l/N. (19.31)

Между первым и вторым главными максимумами также расположены N - 1 добавочных минимумов, удовлетворяющих условию

с sin a = ± (N + 1)l/N, ± (N + 2)l/N, ..., (2N - 1)l/N, (19.32)

и т. д. Итак, между любыми двумя соседними главными максимумами наблюдается N - 1 добавочных минимумов.

При большом количестве щелей отдельные добавочные минимумы практически не различаются, а все пространство между главными максимумами выглядит темным. Чем больше число щелей дифракционной решетки, тем более резки главные максимумы. На рис. 19.15 представлены фотографии дифракционной картины, полученной от решеток с разным числом N щелей (постоянная дифракционной решетки одинакова), а на рис. 19.16 — график распределения интенсивности.

Особо отметим роль минимумов от одной щели. В направлении, отвечающем условию (19.27), каждая щель дает минимум, поэтому минимум от одной щели сохранится и для всей решетки. Если для некоторого направления одновременно выполняются условия минимума для щели (19.27) и главного максимума решетки (19.29), то соответствующий главный максимум не возникнет. Обычно стараются использовать главные максимумы, которые размещаются между первыми минимумами от одной щели, т. е. в интервале

arcsin (l/a ) > a > - arcsin (l/a ) (19.33)

При падении на дифракционную решетку белого или иного немонохроматического света каждый главный максимум, кроме центрального, окажется разложенным в спектр [см. (19.29)]. В этом случае k указывает порядок спектра.

Таким образом, решетка является спектральным прибором, поэтому для нее существенны характеристики, которые позволяют оценивать возможность различения (разрешения) спектральных линий.

Одна из таких характеристик — угловая дисперсия — определяет угловую ширину спектра. Она численно равна угловому расстоянию da между двумя линиями спектра, длины волн которых различаются на единицу (dl. = 1):

D = da/ dl.

Дифференцируя (19.29) и используя только положительные значения величин, получаем

с cos a da = ..k dl.

Из последних двух равенств имеем

D = ..k /(c cos a). (19.34)

Так как обычно используют небольшие углы дифракции, то cos a » 1. Угловая дисперсия D тем выше, чем больше порядок k спектра и чем меньше постоянная с дифракционной решетки.

Возможность различать близкие спектральные линии зависит не только от ширины спектра, или угловой дисперсии, но и от ширины спектральных линий, которые могут накладываться друг на друга.

Принято считать, что если между двумя дифракционными максимумами одинаковой интенсивности находится область, где суммарная интенсивность составляет 80% от максимальной, то спектральные линии, которым соответствуют эти максимумы, уже разрешаются.

При этом, согласно Дж. У. Рэлею, максимум одной линии совпадает с ближайшим минимумом другой, что и считается критерием разрешения. На рис. 19.17 изображены зависимости интенсивности I отдельных линий от длины волны (сплошная кривая) и их суммарная интенсивность (штриховая кривая). Из рисунков легко увидеть неразрешенность двух линий (а ) и предельную разрешенность (б ), когда максимум одной линии совпадает с ближайшим минимумом другой.

Разрешение спектральных линий количественно оценивается разрешающей способностью, равной отношению длины волны к наименьшему интервалу длин волн, которые еще могут быть разрешены:

R = l./ Dl.. (19.35)

Так, если имеются две близкие линии с длинами волн l 1 ³ l 2 , Dl = l 1 - l 2 , то (19.35) можно приближенно записать в виде

R = l 1 /(l 1 - l 2), или R = l 2 (l 1 - l 2) (19.36)

Условие главного максимума для первой волны

с sin a = k l 1 .

С ним совпадает ближайший минимум для второй волны, условие которого

с sin a = k l 2 + l 2 /N.

Приравнивая правые части последних двух равенств, имеем

k l 1 = k l 2 + l 2 /N, k (l 1 - l 2) = l 2 /N,

откуда [с учетом (19.36)]

R = k N .

Итак, разрешающая способность дифракционной решетки тем больше, чем больше порядок k спектра и число N штрихов.

Рассмотрим пример. В спектре, полученном от дифракционной решетки с числом щелей N = 10 000, имеются две линии вблизи длины волны l = 600 нм. При какой наименьшей разности длин волн Dl эти линии различаются в спектре третьего порядка (k = 3)?

Для ответа на этот вопрос приравняем (19.35) и (19.37), l/Dl = kN, откуда Dl = l/(kN ). Подставляя числовые значения в эту формулу, находим Dl = 600 нм/(3 . 10 000) = 0,02 нм.

Так, например, различимы в спектре линии с длинами волн 600,00 и 600,02 нм и не различимы линии с длинами волн 600,00 и 600,01 нм

Выведем формулу дифракционной решетки для наклонного падения когерентных лучей (рис. 19.18, b — угол падения). Условия формирования дифракционной картины (линза, экран в фокальной плоскости) те же, что и при нормальном падении.

Проведем перпендикуляры А"В кпадающим лучам и АВ" ко вторичным волнам, идущим под углом a к перпендикуляру, восставленному к плоскости решетки. Из рис. 19.18 видно, что к положению А¢В лучи имеют одинаковую фазу, от АВ" и далее разность фаз лучей сохраняется. Следовательно, разность хода есть

d = ВВ"-АА". (19.38)

Из D АА"В имеем АА¢ = АВ sin b = с sin b. Из DВВ"А находим ВВ" = АВ sin a = с sin a. Подставляя выражения для АА¢ и ВВ" в (19.38) и учитывая условие для главных максимумов, имеем

с (sin a - sin b) = ± kl. (19.39)

Центральный главный максимум соответствует направлению падающих лучей (a= b).

Наряду с прозрачными дифракционными решетками используют отражательные, у которых штрихи нанесены на металлическую поверхность. Наблюдение при этом ведется в отраженном свете. Отражательные дифракционные решетки, изготовленные на вогнутой поверхности, способны образовывать дифракционную картину без линзы.

В современных дифракционных решетках максимальное число штрихов составляет более 2000 на 1 мм, а длина решетки более 300 мм, что дает значение N около миллиона.

ОПРЕДЕЛЕНИЕ

Дифракционная решетка - это простейший спектральный прибор. Она содержит систему щелей, которые разделяют непрозрачные промежутки.

Дифракционные решетки подразделяют на одномерные и многомерные. Одномерная дифракционная решетка состоит из параллельных прозрачных для света участков одинаковой ширины, которые располагаются в одной плоскости. Прозрачные участки разделяют непрозрачные промежутки. При помощи данных решеток наблюдения проводят в проходящем свете.

Существуют отражающие дифракционные решетки. Такая решетка представляет собой, например, полированную (зеркальную) металлическую пластинку, на которую нанесены штрихи при помощи резца. В результате получают участки, которые отражают свет и участки, которые свет рассеивают. Наблюдение при помощи такой решетки проводят в отраженном свете.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Период дифракционной решетки

Если ширину щели на решетки обозначим a, ширину непрозрачного участка - b, тогда сумма данных двух параметров - это период решетки (d):

Период дифракционной решетки иногда называют еще постоянной дифракционной решетки. Период дифракционной решетки можно определить как расстояние, через которое происходит повтор штрихов на решетке.

Постоянную дифракционной решетки можно найти, если известно количество штрихов (N), которые имеет решетка на 1 мм своей длины:

Период дифракционной решетки входит в формулы, которые описывают картину дифракции на ней. Так, если монохроматическая волна падает на одномерную дифракционную решетку перпендикулярно к ее плоскости, то главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

где - угол между нормалью к решетке и направлением распространения дифрагированных лучей.

Кроме главных минимумов, в результате взаимной интерференции световых лучей, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, в результате появляются дополнительные минимумы интенсивности. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; принимает любые целые значения кроме 0, Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Величина синуса не может превышать единицу, следовательно, число главных максимумов (m):

Примеры решения задач

ПРИМЕР 1

Задание Сквозь дифракционную решетку проходит пучок света, имеющий длину волны . На расстоянии L от решетки размещается экран, на который при помощи линзы формируют картину дифракции. Получают, что первый максимум дифракции расположен на расстоянии x от центрального (рис.1). Каков период дифракционной решетки (d)?
Решение Сделаем рисунок.

В основу решения задачи положим условие для главных максимумов картины дифракции:

По условию задачи речь идет о первом главном максимуме, то . Из рис.1 получим, что:

Из выражений (1.2) и (1.1) имеем:

Выразим искомый период решетки, получаем:

Ответ

ОПРЕДЕЛЕНИЕ

Дифракционной решеткой называют спектральный прибор, который является системой некоторого количества щелей, разделенных непрозрачными промежутками.

Очень часто на практике используют одномерную дифракционную решетку, состоящую из параллельных щелей одинаковой ширины, находящихся в одной плоскости, которые разделяют равными по ширине непрозрачными промежутками. Такую решетку изготавливают при помощи специальной делительной машины, которая наносит на пластине из стекла параллельные штрихи. Количество таких штрихов может быть более чем тысяча на один миллиметр.

Лучшими считаются отражательные дифракционные решетки. Это совокупность участков, которые отражают свет с участками, которые свет отражают. Такие решетки представляют собой отшлифованную металлическую пластину, на которой рассеивающие свет штрихи нанесены резцом.

Картина дифракции на решетке — это результат взаимной интерференции волн, которые идут ото всех щелей. Следовательно, при помощи дифракционной решетки реализуется многолучевая интерференция когерентных пучков света, которые подверглись дифракции и которые идут от всех щелей.

Допустим, что на дифракционной решетке ширина щели будет a, ширина непрозрачного участка — b, тогда величина:

называется периодом (постоянной) дифракционной решетки.

Картина дифракции на одномерной дифракционной решетке

Представим, что нормально к плоскости дифракционной решетки падает монохроматическая волна. Вследствие того, что щели расположены на равных расстояниях друг от друга, то разности хода лучей (), которые идут от пары соседних щелей, для избранного направления будут одинаковы для всей данной дифракционной решетки:

Главные минимумы интенсивности наблюдаются в направлениях, определенных условием:

Помимо главных минимумов, в результате взаимной интерференции лучей света, которые посылает пара щелей, в некоторых направлениях они гасят друг друга, это значит, что появляются дополнительные минимумы. Они возникают в направлениях, где разность хода лучей составляют нечетное число полуволн. Условие дополнительных минимумов записывают как:

где N - число щелей дифракционной решетки; k’ принимает любые целые значения кроме 0, . Если решетка имеет N щелей, то между двумя главными максимумами находятся дополнительный минимум, которые разделяют вторичные максимумы.

Условием главных максимумов для дифракционной решетки служит выражение:

Так как величина синуса не может быть больше единицы, то количество главных максимумов:

Если через решетку пропускать белый свет, то все максимумы (кроме центрального m=0), будут разложены в спектр. При этом фиолетовая область данного спектра будет обращена к центру картины дифракции. Данное свойство дифракционной решетки применяется для изучения состава спектра света. Если известен период решетки, то вычисление длины волны света можно свести к нахождению угла , который соответствует направлению на максимум.

Примеры решения задач

ПРИМЕР 1

Задание Каков максимальный порядок спектра, который можно получить при помощи дифракционной решетки с постоянной м, если на нее перпендикулярно поверхности падает монохроматический пучок света с длиной волны м?
Решение В качестве основы для решения задачи используем формулу, которая является условием наблюдения главных максимумов для дифракционной картины, полученной при прохождении света сквозь дифракционную решетку:

Максимальным значением является единица, поэтому:

Из (1.2) выразим , получим:

Проведем вычисления:

Ответ

ПРИМЕР 2

Задание Через дифракционную решетку пропускают монохроматический свет с длиной волны . На расстоянии L от решетки поставлен экран. На него при помощи линзы, находящейся около решетки, создают проекцию дифракционной картины. При этом первый максимум дифракции находится на расстоянии l от центрального. Каково количество штрихов на единицу длины дифракционной решетки (N), если свет падает на нее нормально?
Решение Сделаем рисунок.

Не секрет, что наряду с осязаемой материей нас окружают и волновые поля со своими процессами и законами. Это могут быть и электромагнитные, и звуковые, и световые колебания, которые неразрывно связаны с видимым миром, взаимодействуют с ним и влияют на него. Такие процессы и воздействия издавна изучались разными учеными, выведшими основные законы, актуальные и по сей день. Одной из широко применяемых форм взаимодействия материи и волны является дифракция, изучение которой привело к возникновению такого устройства, как дифракционная решетка, получившего широкое применение и в приборах для дальнейшего исследования волнового излучения, и в быту.

Понятие дифракции

Дифракцией называют процесс огибания световыми, звуковыми и прочими волнами какого-либо препятствия, встретившегося на их пути. Более обобщенно этим термином можно назвать любое отклонение распространения волн от законов геометрической оптики, происходящее вблизи препятствий. За счет явления дифракции волны попадают в область геометрической тени, огибают препятствия, проникают сквозь маленькие отверстия в экранах и прочем. К примеру, можно хорошо услышать звук, находясь за углом дома, в результате того, что звуковая волна огибает его. Дифракция световых лучей проявляется в том, что область тени не соответствует пропускному отверстию или имеющемуся препятствию. Именно на этом явлении основан принцип действия дифракционной решетки. Поэтому исследование данных понятий неотделимо друг от друга.

Понятие дифракционной решетки

Дифракционная решетка является оптическим изделием, представляющим собой периодическую структуру, состоящую из большого числа очень узких щелей, разделенных непрозрачными промежутками.

Другой вариант этого устройства - совокупность параллельных микроскопических штрихов, имеющих одинаковую форму, нанесенных на вогнутую или плоскую оптическую поверхность с одинаковым заданным шагом. При падении на решетку световых волн происходит процесс перераспределения волнового фронта в пространстве, что обусловлено явлением дифракции. То есть белый свет разлагается на отдельные волны, имеющие различную длину, что зависит от спектральных характеристик дифракционной решетки. Чаще всего для работы с видимым диапазоном спектра (с длиной волн 390-780 нм) используют устройства, имеющие от 300 до 1600 штрихов на один миллиметр. На практике решетка выглядит как плоская стеклянная или металлическая поверхность с нанесенными с определенным интервалом шероховатыми бороздками (штрихами), не пропускающими свет. С помощью стеклянных решеток наблюдения ведут и в проходящем, и в отраженном свете, с помощью металлических - только в отраженном.

Виды решёток

Как уже было сказано, по применяемому при изготовлении материалу и особенностям использования выделяют дифракционные решетки отражательные и прозрачные. К первым относятся устройства, представляющие собой металлическую зеркальную поверхность с нанесенными штрихами, которые применяют для наблюдений в отраженном свете. В прозрачных решетках штрихи наносят на специальную оптическую, пропускающую лучи поверхность (плоскую или вогнутую), или же вырезаются узкие щели в непрозрачном материале. Исследования при применении таких устройств проводят в проходящем свете. Примером грубой дифракционной решетки в природе можно считать ресницы. Смотря сквозь прищуренные веки, можно в какой-то момент увидеть спектральные линии.

Принцип действия

Работа дифракционной решетки основана на явлении дифракции световой волны, которая, проходя через систему прозрачных и непрозрачных областей, разбивается на обособленные пучки когерентного света. Они претерпевают дифракцию на штрихах. И при этом интерферируют друг с другом. Каждая длина волны имеет свою величину угла дифракции, поэтому происходит разложение белого света в спектр.

Разрешающая способность дифракционной решетки

Являясь оптическим устройством, применяемым в спектральных приборах, она обладает рядом характеристик, определяющих ее использование. Одно из таких свойств - разрешающая способность, заключающаяся в возможности раздельного наблюдения двух спектральных линий, обладающих близкой длиной волн. Повышения этой характеристики добиваются увеличением общего количества штрихов, имеющихся в дифракционной решетке.

В хорошем устройстве число штрихов на один миллиметр достигает 500, то есть при общей длине решетки 100 миллиметров полное количество штрихов составит 50 000. Такая цифра поможет добиться более узких интерференционных максимумов, что позволит выделить близкие спектральные линии.

Применение дифракционных решеток

С помощью данного оптического устройства можно точно определить длину волны, поэтому его применяют как диспергирующий элемент в спектральных приборах различного назначения. Дифракционная решетка применяется для выделения монохроматического света (в монохроматорах, спектрофотометрах и других), в качестве оптического датчика линейных или угловых перемещений (так называемая измерительная решетка), в поляризаторах и оптических фильтрах, в качестве делителя пучков излучения в интерферометре, а также в антибликовых очках.

В быту довольно часто можно столкнуться с примерами дифракционных решеток. Простейшей из отражательных можно считать нарезку компакт-дисков, так как на их поверхность по спирали нанесена дорожка с шагом 1,6 мкм между витками. Третья часть ширины (0,5 мкм) такой дорожки приходится на углубление (где содержится записанная информация), рассеивающее падающий свет, а около двух третей (1,1 мкм) занимает нетронутая подложка, способная отражать лучи. Следовательно, компакт-диск является отражательной дифракционной решеткой с периодом 1,6 мкм. Другим примером такого устройства являются голограммы различного вида и направления применения.

Изготовление

Для получения качественной дифракционной решетки необходимо соблюдать очень высокую точность изготовления. Ошибка при нанесении хоть одного штриха или щели приводит к моментальной выбраковке изделия. Для процесса изготовления применяется особая делительная машина с алмазными резцами, крепящаяся к специальному массивному фундаменту. До начала процесса нарезки решетки это оборудование должно проработать от 5 до 20 часов в холостом режиме, чтобы стабилизировать все узлы. Изготовление одной дифракционной решетки занимает почти 7 суток. Несмотря на то что нанесение каждого штриха происходит всего лишь за 3 секунды. Решетки при таком изготовлении обладают равноотстающими друг от друга параллельными штрихами, форма сечения которых зависит от профиля алмазного резца.

Современные дифракционные решетки для спектральных приборов

В настоящее время получила распространение новая технология их изготовления с помощью образования на особых светочувствительных материалах, называемых фоторезистами, интерференционной картины, получаемой от излучения лазеров. В результате выпускается продукция с голографическим эффектом. Наносить штрихи подобным образом можно на ровную поверхность, получая плоскую дифракционную решетку или вогнутую сферическую, что даст вогнутое устройство, имеющее фокусирующее действие. В конструкции современных спектральных приборов применяются и те и другие.

Таким образом, явление дифракции распространено в повседневной жизни повсеместно. Это обуславливает широкое применение такого основанного на данном процессе устройства, как дифракционная решетка. Она может как стать частью научно-исследовательского оборудования, так и встретиться в быту, например, в качестве основы голографической продукции.