Классическая механика движение точки и тела. Классическая физика

Классическая механика (механика Ньютона)

Рождение физики как науки связано с открытиями Г Галилея и И. Ньютона. Особенно значителен вклад И. Ньютона, который записал законы механики на языке математики. Свою теорию, которую часто называют классической механикой, И. Ньютон изложил в труде «Математические начала натуральной философии» (1687).

Основу классической механики составляют три закона и два положения относительно пространства и времени.

Прежде чем рассматривать законы И. Ньютона, напомним, что такое система отсчета и инерциальная система отсчета, поскольку законы И. Ньютона выполняются не во всех системах отсчета, а только в инерциальных системах отсчета.

Системой отсчета называется система координат, например прямоугольных декартовых координат, дополненная часами, находящимися в каждой точке геометрически твердой среды. Геометрически твердой средой называется бесконечное множество точек, расстояния между которыми фиксированы. В механике И. Ньютона предполагается, что время течет независимо от положения часов, т.е. часы синхронизированы и поэтому время течет одинаково во всех системах отсчета.

В классической механике пространство считается евклидовым, а время представляется евклидовой прямой. Иными словами, И. Ньютон считал пространство абсолютным, т.е. оно везде является одним и тем же. Это значит, что для измерения длин можно использовать не- деформируемые стержни с нанесенными на них делениями. Среди систем отсчета можно выделить такие системы, которые благодаря учету ряда специальных динамических свойств отличаются от остальных.

Система отсчета, по отношению к которой тело движется равномерно и прямолинейно, называется инерциальной или галилеевой.

Факт существования инерциальных систем отсчета нельзя проверить экспериментально, так как в реальных условиях нельзя выделить часть материи, изолировать ее от остального мира так, чтобы движение этой части материи не подвергалось воздействию других материальных объектов. Чтобы определить в каждом конкретном случае, может ли система отсчета быть принята за инерциальную, проверяют, сохраняется ли скорость тела. Степень этого приближения определяет степень идеализации задачи.

Например, в астрономии при изучении движения небесных тел за инерциальную систему отсчета часто принимают декартову систему ординат, начало которой находится в центре масс какой-то «неподвижной» звезды, а оси координат направлены на другие «неподвижные» звезды. На самом деле звезды движутся с большими скоростями относительно других небесных объектов, поэтому понятие «неподвижная» звезда условно. Но в силу больших расстояний между звездами приведенное нами положение достаточно для практических целей.

Например, наилучшей инерциальной системой отсчета для Солнечной системы будет такая, начало которой совпадает с центром масс Солнечной системы, практически находящимся в центре Солнца, так как в Солнце сосредоточено более 99% массы нашей планетной системы. Оси координат системы отсчета направлены на далекие звезды, которые считаются неподвижными. Такая система называется гелиоцентрической.

Утверждение о существовании инерциальных систем отсчета И. Ньютон сформулировал в виде закона инерции, который называют первым законом Ньютона. Этот закон гласит: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние.

Первый закон Ньютона отнюдь не очевиден. До Г. Галилея считалось, что это воздействие обусловливает не изменение скорости (ускорение), а саму скорость. Данное мнение основывалось на таких известных из повседневной жизни фактах, как необходимость непрерывно толкать тележку, которая движется по горизонтальной ровной дороге, для того чтобы ее движение не замедлялось. Теперь известно, что, толкая тележку, мы уравновешиваем воздействие, оказываемое на нее трением. Но, не зная об этом, легко прийти к заключению, что воздействие необходимо для поддержания движения неизменным.

Второй закон Ньютона гласит: скорость изменения импульса частицы равна действующей на частицу силе :

или

где т - масса; t- время; а -ускорение; v - вектор скорости; p = mv - импульс; F - сила.

Силой называется векторная величина, характеризующая воздействие на данное тело со стороны других тел. Модуль этой величины определяет интенсивность воздействия, а направление совпадает с направлением ускорения, сообщаемого телу этим воздействием.

Масса является мерой инертности тела. Под инертностью понимают неподатливость тела действию силы, т.е. свойство тела сопротивляться изменению скорости под действием силы. Для того, чтобы выразить массу некоторого тела числом, надо сравнить ее с массой эталонного тела, принятого за единицу.

Формула (3.1) называется уравнением движения частицы. Выражение (3.2) - это вторая формулировка второго закона Ньютона: произведение массы частицы на ее ускорение равно силе, которая действует на частицу.

Формула (3.2) справедлива и для протяженных тел в том случае, если они движутся поступательно. Если на тело действует несколько сил, то под силой F в формулах (3.1) и (3.2) подразумевается их результирующая, т.е. сумма сил.

Из (3.2) следует, что при F = 0 (т.е. на тело не действуют другие тела) ускорение а равно нулю, поэтому тело движется прямолинейно и равномерно. Таким образом, первый закон Ньютона как бы входит во второй закон как его частный случай. Но первый закон Ньютона формируется независимо от второго, так как в нем содержится утверждение о существовании в природе инерциальных систем отсчета.

Уравнение (3.2) имеет такой простой вид только при согласованном выборе единиц измерения силы, массы и ускорения. При независимом выборе единиц измерения второй закон Ньютона записывается следующим образом:

где к - коэффициент пропорциональности.

Воздействие тел друг на друга всегда носит характер взаимодействия. В том случае, если тело А действует на тело В с силой F BA то и тело В действует на тело А с силой F AB .

Третий закон Ньютона гласит, что силы, с которыми взаимодействуют два тела, равны по модулю и противоположны по направлению, т.е.

Поэтому силы всегда возникают попарно. Заметим, что силы в формуле (3.4) приложены к разным телам, и поэтому они не могут уравновешивать друг друга.

Третий закон Ньютона, также как и первые два, выполняется только в инерциальных системах отсчета. В неинерциальных системах отсчета он не является справедливым. Кроме этого отступления от третьего закона Ньютона будут наблюдаться у тел, которые движутся со скоростями, близкими к скорости света.

Следует заметить, что все три закона Ньютона появились в результате обобщения данных большого числа экспериментов и наблюдений и поэтому являются эмпирическими законами.

В механике Ньютона не все системы отсчета равноправны, так как инерциальные и неинерциальные системы отсчета отличаются друг от друга. Указанное неравноправие свидетельствует о недостаточной зрелости классической механики. С другой стороны, все инерциальные системы отсчета равноправны и в каждой из них законы Ньютона одни и те же.

Г. Галилей в 1636 г. установил, что в инерциальной системе отсчета никакими механическими опытами нельзя определить, находится ли она в состоянии покоя или движется равномерно и прямолинейно.

Рассмотрим две инерциальные системы отсчета N и N", причем система jV"движется относительно системы N по оси х с постоянной скоростью v (рис. 3.1).

Рис. 3.1.

Отсчет времени начнем с того момента, когда начала координат о и о"совпадали. В этом случае координаты х и х" произвольно взятой точки М будут связаны выражением х = х" + vt. При сделанном нами выборе осей координат у - у z~ Z- В механике Ньютона предполагается, что во всех системах отсчета время течет одинаково, т.е. t = t". Следовательно, мы получили совокупность четырех уравнений:

Уравнения (3.5) называются преобразованиями Галилея. Они дают возможность переходить от координат и времени одной инерциальной системы отсчета к координатам и времени другой инерциальной системы отсчета. Продифференцируем по времени / первое уравнение (3.5), имея в виду, что t = t поэтому производная по t совпадет с производной по Г. Получим:

Производная - это проекция скорости частицы и в системе N

на ось х этой системы, а производная - это проекция скорости частицы о "в системе N "на осьх "этой системы. Поэтому получаем

где v = v x =v X " - проекция вектора на ось х совпадает с проекцией того же вектора на ось*".

Теперь дифференцируем второе и третье уравнение (3.5) и получаем:

Уравнения (3.6) и (3.7) можно заменить одним векторным уравнением

Уравнение (3.8) можно рассматривать или как формулу преобразования скорости частицы из системы N" в систему N, или как закон сложения скоростей: скорость частицы относительно системы У равна сумме скорости частицы относительно системы N" и скорости системы N" относительно системы N. Продифференцируем по времени уравнение (3.8) и получим:

поэтому ускорения частицы относительно систем N и УУ’одни и те же. Сила F, N, равна силе F", которая действует на частицу в системе N", т.е.

Соотношение (3.10) будет выполняться, так как сила зависит от расстояний между данной частицей и взаимодействующими с ней частицами (а также от относительных скоростей частиц), а эти расстояния (и скорости) в классической механике полагаются одинаковыми во всех инерциальных системах отсчета. Масса тоже имеет одинаковое числовое значение во всех инерциальных системах отсчета.

Из приведенных выше рассуждений следует, что если выполняется соотношение та = F, то будет выполняться равенство та = F". Системы отсчета N и N" были взяты произвольно, поэтому полученный результат означает, что законы классической механики одинаковы для всех инерциальных систем отсчета. Это утверждение называется принципом относительности Галилея. Можно сказать иначе: законы механики Ньютона инвариантны относительно преобразований Галилея.

Величины, которые имеют одно и то же числовое значение во всех системах отсчета, называют инвариантными (от лат. invariantis - не- изменяющийся). Примерами таких величин служат электрический заряд, масса и др.

Инвариантными по отношению к преобразованию координат и времени при переходе от одной инерциальной системы отсчета к другой называются и уравнения, вид которых не меняется при таком переходе. Величины, которые входят в эти уравнения, могут меняться при переходе от одной системы отсчета к другой, но формулы, которые выражают связь между этими величинами, остаются неизменными. Примерами таких уравнений являются законы классической механики.

  • Под частицей подразумевается материальная точка, т.е. тело, размерами которогоможно пренебречь по сравнению с расстоянием до других тел.
Главная > Лекция

Ньютон – основатель классической механики. И хотя сегодня с позиции современной науки механистическая картина мира Ньютона кажется грубой, ограниченной, именно она дала толчок для развития теоретических и прикладных наук на последующие почти 200 лет. Ньютону мы обязаны такими понятиями, как абсолютное пространство, время, масса, сила, скорость, ускорение; он открыл законы движения физических тел, заложив основу развития науки физики. (Однако ничего этого не могло бы быть, не будь до него Галилея, Коперника и др. Недаром сам он говорил: «Я стоял на плечах гигантов».) Остановимся на главном достижении научных изысканий Ньютона – механистической картине мира. Она содержит следующие положения:

    Утверждение о том, что весь мир, Вселенная есть ничто иное, как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в пространстве и времени, связанных между собой силами тяготения, передающимися от тела к телу через пустоту. Отсюда следует, что все события жестко предопределены и подчинены законам классической механики, что дает возможность предопределять и предвычислять ход событий. Элементарной единицей мира является атом, и все тела состоят из абсолютно твердых, неделимых, неизменных корпускул – атомов. При описании механических процессов им использовались понятия «тело» и «корпускула». Движение атомов и тел представлялось как простое перемещение тел в пространстве и во времени. Свойства пространства и времени, в свою очередь, представлялись как неизменные и независящие от самих тел. Природа представлялась как большой механизм (машина), в котором каждая часть имела свое предназначение и жестко подчинялась определенным законам. Сутью данной картины мира является синтез естественно-научных знаний и законов механики, который сводил (редуцировал) все разнообразие явлений и процессов к механическим.
Можно отметить плюсы и минусы такой картины мира. К плюсам следует отнести тот факт, что она позволяла объяснить многие явления и процессы, происходящие в природе, не прибегая к мифам и религии, а из самой природы. Что касается минусов, то их немало. К примеру, материя в механистическом истолковании Ньютона представлялась как инертная субстанция, обреченная на вечное повторение вещей; время – пустая длительность, пространство – простое «вместилище» вещества, существующее независимо ни от времени, ни от материи. Из самой картины мира был устранен познающий субъект – априорно предполагалось, что такая картина мира существует всегда, сама по себе и не зависит от средств и способов познающего субъекта. Механистическая картина мира, методы научного объяснения природы, разработанные Ньютоном, дали мощный толчок развитию других наук, появлению новых областей знания – химии, биологии (к примеру, Р.Бойль сумел показать, как происходит соединение элементов, и объяснить другие химические явления, исходя из представлений о движении «малых частиц материи» (корпускул)). Ламарк в поисках ответа на вопрос об источнике изменений в живых организмах, опираясь на механистическую парадигму Ньютона, сделал вывод о том, что развитие всего живого подчинено принципу «нарастающего движения флюидов». Вплоть до XIX века в естествознании царствовала механистическая картина мира, а познание опиралось на методологические принципы – механицизм и редукционизм. Однако по мере развития науки, различных ее областей (биологии, химии, геологии, самой физики) становился очевидностью факт, что механистическая картина мира не подходит для объяснения многих явлений. Так, исследуя электрическое и магнитное поля, Фарадей и Масквелл обнаружили факт, согласно которому материю можно было представить не только как вещество (в соответствии с механистическим ее толкованием), но и как электромагнитное поле. Электромагнитные процессы не могли быть сведены к механическим, и потому напрашивался вывод: не законы механики, а законы электродинамики являются основными в мироздании. Наконец, открытие закона сохранения энергии в 40-х годы XIX столетия (Ю.Майер, Д.Джоуль, Э.Ленц) показало, что такие явления, как теплота, свет, электричество, магнетизм, также не изолированы друг от друга (как это представлялось раньше), а взаимодействуют, переходят при определенных условиях одно в другое и представляют собой не что иное, как разные формы движения в природе. Так была подорвана механистическая картина мира с ее упрощенным представлением о движении как простом перемещении тел в пространстве и во времени, изолированных одно от другого, о единственно возможной форме движения – механической, о пространстве как «вместилище» вещества и о времени как неизменной константе, не зависящей от самих тел. 5. Конец XIX- начало XX вв. ознаменованы целым каскадом научных открытий, которые завершили подрыв механистической концепции Ньютона. Назовем лишь некоторые из них: это открытие элементарной частицы – электрона, входящей в структуру атома (Дж. Томпсон), затем – положительно заряженной частицы – ядра внутри атома (Э.Резерфорд, 1914 г.), на основе чего была предложена планетарная модель атома: вокруг положительно заряженного ядра вращаются электроны. Резерфорд также предсказал существование и еще одной элементарной частицы внутри атома – протона (что позже и было открыто). Эти открытия перевернули существующие до сих пор представления об атоме как об элементарной, неделимой частице мироздания, его «кирпичике». Следующий ощутимый удар по классическому естествознанию нанесла теория относительности А.Эйнштейна (1916 г.), которая показала, что пространство и время не являются абсолютными, они неразрывно связаны с материей (являются ее атрибутивными свойствами), а также связаны движением между собой. Очень четко суть этого открытия охарактеризовал сам Эйнштейн в работе «Физика и реальность», где он говорит о том, что если раньше (имеется в виду время господства классической механики Ньютона) считали, что в случае исчезновения из Вселенной всей материи пространство и время сохранились бы, то теория относительности обнаружила, что вместе с материей исчезли бы и пространство, и время. Вместе с тем, значение указанных открытий заключается и в том, что стал очевидным факт: картина объективного мира определяется не только свойствами самого этого мира, но и характеристиками субъекта познания, его активностью, личной позицией, принадлежностью к той или иной культуре, зависит от взаимодействия познающего субъекта с приборами, от методов наблюдений и пр. Огромным достижением науки XIX века является прорыв к вопросам о том, как устроена жизнь человеческого общества, подчиняется ли она неким объективным законам (как природа) или в ней действует стихия, субъективизм. Внедрение техники в производство, усиление товарно-денежных отношений в странах Западной Европы поставили перед необходимостью выяснить причины, факторы, способствующие накоплению богатства нации. Так возникла классическая политэкономия (XVIII в., Адам Смит), в основе которой лежит идея о том, что источником богатства является труд, а регулятором экономических отношений – законы рынка. Адам Смит утверждал, что в основе трудовых отношений лежат частные, индивидуальные интересы индивидов. «Каждый отдельный человек … имеет в виду лишь собственный интерес, преследует лишь собственную выгоду, причем в этом случае он невидимой рукой направляется к цели, которая не входила в его намерения. Преследуя свои собственные интересы, он часто более действенным образом служит интересам общества, чем тогда, когда сознательно стремится служить им». Позже, в 40-е гг. XIX в., немецкий философ К.Маркс подверг критике классическую политэкономию и сумел вскрыть механизм капиталистической эксплуатации, создав теорию прибавочной стоимости. И концепцию А.Смита, и учение К.Маркса можно рассматривать как первые научные подходы к изучению законов общественной жизни. Однако было бы ошибкой представлять дело таким образом, что до Смита и Маркса об обществе и человеке не задумывались ни философы, ни люди науки. Достаточно вспомнить учение об идеальном государстве Платона, проекты о справедливом и процветающем обществе Томаса Мора («Утопия»), Томазо Кампанеллы («Город Солнца»). Однако данные идеи носили утопический характер, это были всего лишь «мечтания», о научном подходе в данном случае говорить не приходится. Правда, в XIX веке английский социалисты- утописты Ф.Фурье (1772-1837) и Р.Оуэн (1771-1858), отталкиваясь от идей французских материалистов эпохи Просвещения, попытались создать «социальную науку» (Ф. Фурье), однако их учение о справедливом обществе не освободилось от идеализма и утопизма. Отметим, что влияние успехов естествознания проявило себя и в области гуманитарных наук (психологии, педагогики, истории, риторики, правоведения): требования применения методов науки (наблюдения, описания, эксперимента) распространяются и на эту сферу познания. Подведем итоги: К концу XIX столетия завершился период формирования классического типа научного знания, в арсенале которого – значительные достижения. В физике – это классическая механика Ньютона, позднее – термодинамика, теория электричества и магнетизма; в химии была открыта периодическая система элементов, заложены начала органической химии; в математике – развитие аналитической геометрии и математического анализа; в биологии – эволюционная теория, теория клеточного строения организмов, открытие рентгеновых лучей и т.д. К концу XIX века сложилось ощущение, что наука нашла ответы почти на все вопросы о мире, осталось разгадать немногое. И вдруг – новый прорыв – открытие структуры атома, повлекшее за собой «кризис в физике», позднее распространившийся на другие отрасли знания. Сегодня, глядя с расстояния прожитых лет, можно сказать, что рубеж XIX-XX вв. ознаменовал переход от классической науки к неклассической (или постклассической). Их отличия можно представить в следующем виде:
Классическая наука Постклассическая наука
1. Вынесение субъекта за рамки объекта. Признание субъектности знания и познания.
2. Установка на рациональность. Учет внерациональных способов познания.
3. Господство динамических закономерностей. Учет роли и значения вероятностно-статистических закономерностей.
4. Объект изучения – макромир. Объект изучения - микро-, макро- и мегамир.
5. Ведущий метод познания – эксперимент. Моделирование (в том числе математическое).
6. Безусловная наглядность. Условная наглядность.
7. Четкая грань между естественными и гуманитарными науками. Стирание этой грани.
8. Отчетливая дисциплинарность. Преобладание дифференциации наук. Дифференциация и интеграция (теория систем, синергетика, структурный метод).
Не раскрывая в деталях сущность обозначенных отличительных признаков постклассической науки (в той или иной мере это было сделано по ходу раскрытия этапов развития науки), отметим, что происшедшие в ней изменения оказали огромное влияние на мир в целом и на отношение к нему человека. Это проявляется, во-первых, в том, что в современной научно-технической эпохе не существует неких единых канонов, общепринятых стандартов в восприятии мира, его объяснении и понимании – эта открытость выражается в плюрализме идей, концепций, ценностей. Другой (второй) особенностью современной ситуации являются ускоренный ритм событий, их смысловая плотность и конфликтность. В-третьих, сложилась парадоксальная ситуация: с одной стороны, утеряна вера в разумное устройство мироздания, а с другой – прослеживается тенденция рационализации, технизации всех сторон жизни как общества, так и отдельных индивидов. Итогом этих процессов являются радикальное изменение стиля жизни, предпочтительное отношение ко всему быстротечному, меняющемуся в отличие от устойчивого, традиционного, консервативного. Лекция № 4 Структура научного знания
    Многообразие типов научного знания. Эмпирическое знание, его структура и особенности. Структура и специфические особенности теоретического знания. Основания науки.
1. В каждой отрасли науки – физике, биологии, химии и др. существует многообразие типов или форм научного знания – эмпирические факты, гипотезы, модели, законы, теории и др. Все они отличаются друг от друга по степени обобщенности, к примеру, эмпирические факты представляют собой некую эмпирическую реальность, представленную различными информационными средствами – текстами, формулами, фотографиями, видеопленками, да и просто наблюдаемыми в повседневной жизни явлениями, в то время как закон есть формулировка всеобщих утверждений о свойствах и отношениях исследуемой предметной области (на основе фактов). Рассмотрим подробнее каждый из них. Важнейшая задача научного исследования – найти, выявить законы определенной, предметной деятельности, выразить их в соответствующих понятиях, теориях, идеях, принципах. В самом общем виде закон можно определить как связь между явлениями, процессами, которую отличают объективность, конкретность, всеобщность, необходимость, повторяемость и устойчивость. Устойчивость, инвариантность законов, однако, всегда соотносима с конкретными условиями, в случае изменения которых данная инвариантность устраняется и порождается новая, что приводит к изменению закона, его углублению, расширению либо сужению сферы действия. Законы открываются первоначально в форме предположений, гипотез. Гипотеза представляет такую форму знания, в которой содержится предположение, сформулированное на основе ряда фактов, истинное значение которых неопределенно и нуждается в доказательстве. В современной методологии науки понятие «гипотеза» используется в двух значениях:
    как проблематичная и не обладающая достоверностью форма знания; как метод научного познания.
В первом ее значении гипотеза должна соответствовать таким требованиям, как:
    соответствие установленным в науке законам; согласованность с фактическим материалом; непротиворечивость с точки зрения формальной логики (если же речь идет о противоречии самой объективной реальности, то гипотеза должна содержать противоречия); отсутствие субъективных, произвольных допущений (что не отменяет активности самого субъекта); возможность ее подтверждения или опровержения либо в ходе непосредственного наблюдения, либо косвенно – путем выведения следствий из гипотезы.
Существуют разнообразные виды гипотез: общие, частные и рабочие. Общие гипотезы представляют собой фундамент построения основ научного знания, в них высказывается предположение о закономерностях различного рода связей между явлениями. Частные гипотезы также содержат предположения, но о свойствах единичных фактов, событий, конкретных явлений. Рабочая гипотеза – это своего рода исходный момент – предположение, выдвигаемое на первом этапе исследования, являющееся своего рода ориентиром исследовательского поиска. Следует помнить и о существовании так называемых adhoc(гипотез для данного случая) – это предположения, необходимые для решения ряда проблем, которые впоследствии могут оказаться ошибочным вариантом. Одной из наиболее сложных и развитых форм научного знания является теория, представляющая целостное отображение закономерных и существенных связей определенной области действительности. В науке сложились определенные критерии, которым должна соответствовать теория. Назовем лишь некоторые из них:
    Теория не должна противоречить данным фактов и опыта и быть проверяемой на имеющемся опытном материале. Она не должна противоречить и принципам формальной логики, отличаться при этом логической простотой, «естественностью». Теория «хороша», если она охватывает и связывает воедино широкий круг предметов в целостную систему абстракций.
Карл Поппер, философ науки, сравнивал теорию с сетями, предназначенными улавливать то, что мы называем реальным миром для осознания, объяснения и овладения им. В соответствии с этим истинная теория должна соответствовать всем (а не некоторым) реальным фактам и удовлетворять требованиям практики. Поппер называл теорию инструментом, проверка которого осуществляется в ходе его применения и о пригодности которого судят по результатам таких применений. Теория обладает сложной структурой, в которой выделяют следующие компоненты: понятия, уравнения, аксиомы, законы; идеализированные объекты – абстрактные модели; совокупность приемов, способов, правил, доказательств, нацеленных на прояснение знания; философские обобщения и обоснования. Ядром теории (о чем пойдет речь дальше) является абстрактный, идеализированный объект, без которого невозможно построение теории, поскольку он содержит в себе реальную программу исследования. Существуют разнообразные типы теорий: математические, характеризующиеся высокой степенью абстрактности с опорой на дедукцию. Доминирующим моментом математической теории является применение аксиоматического, гипотетико-дедуктивного метода и метода формализации. Выделяют теории опытных (эмпирических) наук – физики, химии, биологии и т.д. В современной науке принято также делить теории на феноменологические и нефеноменологические. Феноменологические теории описывают процессы, свойства и качества предметов, не вникая в сущность, не выявляя внутренние механизмы (к примеру, психологические, социологические, педагогические теории). Их задача – упорядочить и обобщить факты, используя специфическую терминологию. Как правило, феноменологические теории возникают на начальной стадии развития какой-либо науки. С развитием научного поиска на смену феноменологической теории приходит нефеноменологическая, или объясняющая. Объясняющие теории раскрывают глубинный, внутренний механизм изучаемых явлений и процессов, их взаимодействие, существенные устойчивые связи и отношения, то есть законы, причем теоретические, а не эмпирические, поскольку формируются они на основе идеализированных объектов. Можно привести и такую классификацию теорий, как достоверные и вероятностные по степени их предсказуемости. К достоверным можно отнести теории классической механики, физики, химии; к вероятностным – теории социально-гуманитарных наук. Следует указать и на такую важную форму научного знания, как проблема. Проблема – это, скорее всего, знание о незнании, о том, что следует разрешить, на какой из многочисленных, возникающих в ходе исследования конкретного явления, вопросов важно дать ответ. Умение верно обозначить проблему часто бывает важнее самого ее решения. Чем обычно вызываются проблемы? Они возникают либо при столкновении двух разных теорий, либо в случае возникновения противоречия в отдельной проблеме, либо являются результатом столкновения теории и наблюдения. Постановка и решение научных проблем требуют выбора определенных методов исследования, которые обусловлены либо его целью, либо характером решаемых проблем. Далее, использование понятийного аппарата, с помощью которого возможно фиксировать определенные феномены. Большое значение при постановке и выборе проблемы имеют научные традиции. Многообразие форм научного знания образует его структуру, которая выражает единство устойчивых взаимосвязей между элементами данной системы. Структура научного знания и познания предстает в разных срезах и, соответственно – в совокупности специфических элементов. Структура научного познания может различаться с точки зрения взаимодействия объекта и субъекта научного познания по такому критерию, как предмет и методы познания, что позволяет выделить науки о природе (естествознание), об обществе (социальные, гуманитарные науки) и о самом познании (логика, гносеология, эпистемология, когнитология и др.), по критерию «основания науки», где вычленяются три элемента: а) идеалы и нормы; б) философские основания; в) научная картина мира. Структура научного познания может быть представлена и как единство двух его основных уровней – эмпирического и теоретического. В нашей лекции, как это следует из обозначенных пунктов плана, мы намерены рассмотреть почти все критерии, по которым структурировалось научное познание. Начнем с последнего, то есть с соотношения эмпирического и теоретического уровней познания. 2. Эмпирическое (опытное) знание и познание представляет собой деятельность, в основе которой преобладает живое, непосредственное созерцание объекта. Его характерными чертами являются сбор фактов, их первичное обобщение, описание наблюдений и экспериментов, их систематизация и классификация. Важнейшим элементом эмпирического исследования является факт (от лат. factum – сделанное, свершившееся). Понятие «факт» имеет следующие значения: 1) некий фрагмент действительности, относящийся либо к объективной реальности, либо к сфере сознания и познания («факты сознания»); 2) знание о каком-либо явлении, событии, достоверность которого доказана; 3) предложение, фиксирующее эмпирическое знание (знание, полученное в ходе наблюдений и экспериментов). Факты в научном познании имеют двоякое значение: 1) они образуют основу для выдвижения гипотез и построения теорий; 2) имеют решающее значение в подтверждении теорий. В случаях, когда факты и теория расходятся, требуется время для перепроверки теории, и только тогда, когда противоречие между ними становится неразрешимым, теория объявляется ложной. Факты становятся «упрямой вещью», «воздухом» или «хлебом ученого» лишь в том случае, если они принимаются независимо от того, нравятся или нет ученым, а также если они наиболее полно, всесторонне охватывают объект исследования (речь идет о недопустимости «отсекания» некоторых фактов, выхватывания отдельных их фрагментов из множества). С другой стороны, не следует гоняться за множеством фактов. Основная цель исследователя в работе с фактами заключается в том, чтобы собрав определенное их количество, придать им смысл, сконструировать концептуальную систему. Сбор фактов осуществляется с помощью такого приема эмпирического познания, как наблюдение. Ученый не просто фиксирует встречающиеся ему факты, он руководствуется определенной целью, гипотезой, а потому наблюдение имеет систематизированный, упорядоченный и целенаправленный характер. Ученый не просто регистрирует любые факты, а осуществляет их отбор, селекцию, оставляя те из них, которые имеют отношение к поставленной им цели. КЛАССИЧЕСКАЯ МЕХАНИКА

ЛЕКЦИЯ 1

ВВЕДЕНИЕ В КЛАССИЧЕСКУЮ МЕХАНИКУ

Классическая механика изучает механическое движение макроскопических объектов, которые движутся со скоростями много меньше скорости света (=3 10 8 м/с). Под макроскопическими объектами понимаются объекты, размеры которых
м. (справа стоит размер типичной молекулы).

Физические теории, изучающие системы тел, движение которых происходит со скоростями много меньшими скорости света, относятся к числу нерелятивистских теорий. Если скорости частиц системы сравнимы со скоростью света
, то такие системы относятся к релятивистским системам, и они должны описываться на основе релятивистских теорий. Основой всех релятивистских теорий является специальная теория относительности (СТО). Если размеры изучаемых физических объектов малы
м., то такие системы относятся к квантовым системам, и их теории принадлежат к числу квантовых теорий.

Таким образом, классическую механику следует рассматривать как нерелятивистскую неквантовую теорию движения частиц.

1.1 Системы отсчета и принципы инвариантности

Механическое движение – это изменение положения тела относительно других тел с течением времени в пространстве.

Пространство в классической механике считается трехмерным (для определения положения частицы в пространстве необходимо задать три координаты), подчиняющимся геометрии Евклида (в пространстве справедлива теорема Пифагора) и абсолютным. Время одномерно, однонаправлено (меняется от прошлого к будущему) и абсолютно. Абсолютность пространства и времени означает, что их свойства не зависят от распределения и движения материи. В классической механике принимается справедливым следующее утверждение: пространство и время не связаны друг с другом и могут рассматриваться независимо друг от друга.

Движение относительно и, следовательно, для его описания необходимо выбрать тело отсчета , т.е. тело относительно которого рассматривается движение. Поскольку движение происходит в пространстве и во времени, то для его описания следует выбрать ту или иную систему координат и часы (арифметизировать пространство и время). В силу трехмерности пространства каждой его точке сопоставляются три числа (координаты). Выбор той или иной системы координат обычно диктуется условием и симметрией поставленной задачи. В теоретических рассуждениях мы обычно будем использовать прямоугольную декартову систему координат (рис 1.1).

В классической механике для измерения промежутков времени, в силу абсолютности времени, достаточно наличия одних часов, помещенных в начале системы координат (подробно этот вопрос будет рассмотрен в теории относительности). Тело отсчета и, связанные с этим телом, часы и масштабы (система координат) образуют систему отсчета .

0

Введем понятие замкнутой физической системы. Замкнутой физической системой называется такая система материальных объектов, в которой все объекты системы взаимодействуют между собой, но не взаимодействуют с объектами, которые не входят в систему.

Как показывают эксперименты, по отношению к целому ряду систем отсчета оказываются справедливыми следующие принципы инвариантности.

Принцип инвариантности относительно пространственных сдвигов (пространство однородно): на протекание процессов внутри замкнутой физической системы не сказывается ее место положения относительно тела отсчета.

Принцип инвариантности относительно пространственных поворотов (пространство изотропно): на протекание процессов внутри замкнутой физической системы не сказывается ее ориентация относительно тела отсчета.

Принцип инвариантности относительно временных сдвигов (время однородно): на протекание процессов внутри замкнутой физической системы не сказывается время начала протекания процессов.

Принцип инвариантности относительно зеркальных отражений (пространство зеркально - симметрично): процессы, протекающие в замкнутых зеркально – симметричных физических системах, сами являются зеркально – симметричными.

Те системы отсчета по отношению, к которым пространство однородно, изотропно и зеркально – симметрично и время однородно называются инерциальными системами отсчета (ИСО).

Первый закон Ньютона утверждает, что ИСО существуют.

Существует не одна, а бесконечное множество ИСО. Та система отсчета, которая движется относительно ИСО прямолинейно и равномерно сама будет ИСО.

Принцип относительности утверждает, что на протекание процессов в замкнутой физической системе не сказывается ее прямолинейное равномерное движение относительно системы отсчета; законы, описывающие процессы, одинаковы в разных ИСО; сами процессы будут одинаковы, если одинаковы начальные условия.

1.2 Основные модели и разделы классической механики

В классической механике при описании реальных физических систем вводится ряд абстрактных понятий, которым отвечают реальные физические объекты. В число основных таких понятий входят: замкнутая физическая система, материальная точка (частица), абсолютно твердое тело, сплошная среда и ряд других.

Материальная точка (частица) – тело, размерами и внутренней структурой которого можно пренебречь при описании его движения. При этом каждая частица характеризуется своим определенным набором параметров – масса, электрический заряд. В модели материальной точки не рассматриваются структурные внутренние характеристики частиц: момент инерции, дипольный момент, собственный момент (спин) и др. Положение частицы в пространстве характеризуется тремя числами (координатами) или радиус-вектором (рис. 1.1).

Абсолютно твердое тело

Система материальных точек, расстояния между которыми не меняются в процессе их движения;

Тело, деформациями которого можно пренебречь.

Реальный физический процесс рассматривается как непрерывная последовательность элементарных событий.

Элементарное событие – это явление с нулевой пространственной протяженностью и нулевой длительностью (например, попадание пули в мишень). Событие характеризуется четырьмя числами – координатами; три пространственные координаты (или радиус – вектор) и одна временная координата:
. Движение частицы при этом представляется как непрерывная последовательность следующих элементарных событий: прохождение частицы через данную точку пространства в данное время.

Закон движения частицы считается заданным, если известна зависимость радиус – вектора частицы (или трех ее координат) от времени:

В зависимости от вида изучаемых объектов классическую механику подразделяют на механику частицы и системы частиц, механику абсолютно твердого тела, механику сплошных сред (механика упругих тел, гидромеханика, аэромеханика).

По характеру решаемых задач классическую механику подразделяют на кинематику, динамику и статику. Кинематика изучает механическое движение частиц без учета причин, вызывающих изменение характера движения частиц (сил). Закон движения частиц системы считается заданным. По этому закону в кинематике определяются скорости, ускорения, траектории движения частиц системы. Динамика рассматривает механическое движение частиц с учетом причин, вызывающих изменение характера движения частиц. Силы, действующие между частицами системы и на частицы системы со стороны тел, не включенных в систему, считаются известными. Природа сил в классической механике не обсуждается. Статика может рассматриваться как частный случай динамики, где изучаются условия механического равновесия частиц системы.

По способу описания систем механика делится на ньютонову и аналитическую механику.

1.3 Преобразования координат событий

Рассмотрим, как преобразуются координаты событий при переходе от одной ИСО к другой.

1. Пространственный сдвиг. В данном случае преобразования выглядят так:


(1.1)

Где
– вектор пространственного сдвига, который не зависит от номера события (индекс а).

2. Временной сдвиг:

,
, (1.2)

Где – временной сдвиг.

3. Пространственный поворот:

,
, (1.3)

Где
– вектор бесконечно малого поворота (рис.1.2).

4. Временная инверсия (обращение времени):

,
. (1.4)

5. Пространственная инверсия (отражение в точке):

, (1.5)

6. Преобразования Галилея. Рассматриваем преобразования координат событий при переходе от одной ИСО к другой, которая движется относительно первой прямолинейно и равномерно со скоростью (рис.1.3):

, , (1.6)

Где второе соотношение постулируется (!) и выражает собой абсолютность времени.

Дифференцируя по времени правую и левую часть преобразования пространственных координат с учетом абсолютного характера времени, используя определение скорости , как производной от радиуса – вектора по времени, условие, что =const, получаем классический закон сложения скоростей

. (1.7)

Здесь следует особо обратить внимание на то обстоятельство, что при выводе последнего соотношения необходимо принимать во внимание постулат об абсолютном характере времени.


Рис. 1.2 Рис. 1.3

Дифференцируя по времени еще раз, используя определение ускорения , как производной от скорости по времени, получим, что ускорение одинаково по отношению к разным ИСО (инвариантно относительно преобразований Галилея). Данное утверждение математически выражает собой принцип относительности в классической механике.

С математической точки зрения преобразования 1-6 образуют группу. Действительно, данная группа содержит в себе единичное преобразование – тождественное преобразование, отвечающее отсутствию перехода от одной системы к другой; для каждого из преобразований 1-6 существует обратное преобразование, которое переводит систему в исходное состояние. Операция умножения (композиции) вводится как последовательное применение соответствующих преобразований. Следует особо обратить внимание, что группа преобразований вращения не подчиняется коммутативному (перестановочному) закону, т.е. является неабелевой. Полную группу преобразований 1-6 называют галилеевой группой преобразований.

1.4 Векторы и скаляры

Вектором называется физическая величина, которая преобразуется как радиус-вектор частицы и характеризуется своим численным значением и направлением в пространстве. По отношению к операции пространственной инверсии векторы делятся на истинные (полярные) и псевдовекторы (аксиальные). При пространственной инверсии истинный вектор меняет свой знак, псевдовектор не изменяется.

Скаляры характеризуются только своим численным значением. По отношению к операции пространственной инверсии скаляры делятся на истинные и псевдоскаляры . При пространственной инверсии истинный скаляр не изменяется, псевдоскаляр меняет свой знак.

Примеры . Радиус-вектор, скорость, ускорение частицы являются истинными векторами. Векторы угла поворота, угловой скорости, углового ускорения – псевдовекторы. Векторное произведение двух истинных векторов – псевдовектор, векторное произведение истинного вектора на псевдовектор – истинный вектор. Скалярное произведение двух истинных векторов – истинный скаляр, истинного вектора на псевдовектор – псевдоскаляр.

Следует отметить, что в векторном или скалярном равенстве справа и слева должны стоять слагаемые одной природы по отношению к операции пространственной инверсии: истинные скаляры или псевдоскаляры, истинные векторы или псевдовекторы.

Механика - учение о равновесии и движении тел (или их частей) в пространстве и времени. Механическое движение представляет собой простейшую и вместе с тем (для человека) наиболее распространенную форму существования материи. Поэтому механика занимает исключительно важное место в естествознании и является основным подразделом физики. Она исторически возникла и сформировалась как наука раньше других подразделов естествознания.

Механика включает в себя статику, кинематику и динамику. В статике изучаются условия равновесия тел, в кинематике - движения тел с геометрической точки зрения, т.е. без учета действия сил, а в динамике - с учетом этих сил. Статику и кинематику часто рассматривают как введение в динамику, хотя и они имеют самостоятельное значение.

До сих пор под механикой мы подразумевали классическую механику, строительство которой было завершено к началу XX века. В рамках современной физики существуют еще две механики - квантовая и релятивистская. Но более подробно мы рассмотрим классическую механику.

Классическая механика рассматривает движение тел со скоростями много меньше скорости света. Согласно специальной теории относительности, для тел, перемещающихся с большими скоростями, близкими к скорости света, не существует абсолютного времени и абсолютного пространства. Отсюда характер взаимодействия тел становится сложнее, в частности, масса тела, оказывается, зависит от скорости его движения. Все это явилось предметом рассмотрения релятивистской механики, для которой константа скорости света играет фундаментальную роль.

Классическая механика базируется на следующих основных законах.

Принцип относительности Галилея

Согласно этому принципу существует бесконечно много систем отсчёта, в которых свободное тело покоится или движется с постоянной по модулю и направлению скоростью. Эти системы отсчёта называются инерциальными и движутся друг относительно друга равномерно и прямолинейно. Этот принцип можно также сформулировать как отсутствие абсолютных систем отсчёта, то есть систем отсчёта, каким-либо образом выделенных относительно других.

Основой классической механики являются три закона Ньютона.

  • 1. Всякое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние. Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью. Поэтому первый закон называют также законом инерции.
  • 2. Ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.
  • 3. Силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению.

Второй закон Ньютона нам известен в виде

естествознание классический механика закон

F = m Ч a, или a = F/m,

где ускорение а, получаемое телом под действием силы F, обратно пропорционально массе тела m.

Первый закон можно получить из второго, так как в случае отсутствия воздействия на тело со стороны других сил ускорение также равно нулю. Однако первый закон рассматривается как самостоятельный закон, поскольку он утверждает существование инерциальных систем отсчета. В математической формулировке второй закон Ньютона чаще всего записывается в следующем виде:

где -- результирующий вектор сил, действующих на тело; -- вектор ускорения тела; m -- масса тела.

Третий закон Ньютона уточняет некоторые свойства введёного во втором законе понятия силы. Им постулируется наличие для каждой силы, действующей на первое тело со стороны второго, равной по величине и противоположной по направлению силы, действующей на второе тело со стороны первого. Наличие третьего закона Ньютона обеспечивает выполнение закона сохранения импульса для системы тел.

Закон сохранения импульса

Данный закон является следствием законов Ньютона для замкнутых систем, то есть систем, на которые не действуют внешние силы или действия внешних сил скомпенсированы и результирующая сила равна нулю. С более фундаментальной точки зрения существует взаимосвязь закона сохранения импульса и однородности пространства , выражаемая теоремой Нётер.

Закон сохранения энергии

Закон сохранения энергии является следствием законов Ньютона для замкнутых консервативных систем, то есть систем, в которых действует только консервативные силы. Энергия, отданная одним телом другому, всегда равна энергии, полученной другим телом. Для количественной оценки процесса обмена энергией между взаимодействующими телами в механике вводится понятие работы силы, вызывающей движение. Сила, вызывающая движение тела, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Как известно, тело массой m, движущееся со скоростью v, обладает кинетической энергией

Потенциальная энергия - это механическая энергия системы тел, которые взаимодействуют посредством силовых полей, например посредством гравитационных сил. Работа, совершаемая этими силами, при перемещении тела из одного положения в другое не зависит от траектории движения, а зависит только от начального и конечного положения тела в силовом поле. Гравитационные силы являются консервативными силами, а потенциальная энергия тела массой m, поднятого на высоту h над поверхностью Земли, равна

Е пот = mgh,

где g - ускорение свободного падения.

Полная механическая энергия равна сумме кинетической и потенциальной энергии.

Материал из Википедии - свободной энциклопедии

Класси́ческая меха́ника - видмеханики(разделафизики, изучающего законы изменения положений тел в пространстве со временем и причины, это вызывающие), основанный назаконах Ньютонаипринципе относительности Галилея. Поэтому её часто называют «Ньютоновской механикой ».

Классическая механика подразделяется на:

    статику(которая рассматривает равновесие тел)

    кинематику(которая изучает геометрическое свойство движения без рассмотрения его причин)

    динамику(которая рассматривает движение тел).

Классическая механика даёт очень точные результаты, если её применение ограничено телами, скоростикоторых много меньшескорости света, а размеры значительно превышают размерыатомовимолекул. Обобщением классической механики на тела, двигающиеся с произвольной скоростью, являетсярелятивистская механика, а на тела, размеры которых сравнимы с атомными -квантовая механика.Квантовая теория полярассматривает квантовые релятивистские эффекты.

Тем не менее, классическая механика сохраняет своё значение, поскольку:

    она намного проще в понимании и использовании, чем остальные теории

    в обширном диапазоне она достаточно хорошо описывает реальность.

Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планетыигалактики), и иногда даже многих микроскопических объектов, таких какмолекулы.

Классическая механика является самосогласованной теорией, то есть в её рамках не существует утверждений, противоречащих друг другу. Однако, её объединение с другими классическими теориями, например классической электродинамикойитермодинамикойприводит к появлению неразрешимых противоречий. В частности, классическая электродинамика предсказывает, чтоскорость светапостоянна для всех наблюдателей, что несовместимо с классической механикой. В началеXX векаэто привело к необходимости созданияспециальной теории относительности. При рассмотрении совместно с термодинамикой, классическая механика приводит кпарадоксу Гиббса, в котором невозможно точно определить величинуэнтропии, и культрафиолетовой катастрофе, в которойабсолютно чёрное телодолжно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к возникновению и развитию квантовой механики.

10 билет МЕХАНИЧЕСКАЯ КАРТИНА МИРА.ТЕРМОДИНАМИКА

Термодина́мика (греч.θέρμη- «тепло»,δύναμις- «сила») - разделфизики, изучающий соотношения и превращениятеплотыи других формэнергии. В отдельные дисциплины выделилисьхимическая термодинамика, изучающаяфизико-химическиепревращения, связанные с выделением или поглощением тепла, а такжетеплотехника.

В термодинамике имеют дело не с отдельными молекулами, а с макроскопическими телами, состоящими из огромного числа частиц. Эти тела называются термодинамическими системами. В термодинамике тепловые явления описываются макроскопическими величинами - давление, температура, объём, …, которые не применимы к отдельным молекулам и атомам.

В теоретической физикенаряду с феноменологической термодинамикой, изучающейфеноменологиютепловых процессов, выделяют термодинамику статистическую, которая была создана для механического обоснования термодинамики и была одним из первых разделовстатистической физики.

Термодинамика может быть применена в широком круге вопросов в области науки и техники, таких, как двигатели, фазовые переходы,химические реакции, явления переноса, и дажечёрные дыры. Термодинамика имеет важное значение для других областей физики и химии, химической технологии, аэрокосмической техники,машиностроения,клеточной биологии,биомедицинской инженерии,материаловедения, и полезно в таких других областях, какэкономика [

11 билет ЭЛЕКТРОДИНАМИКА

Электродина́мика - разделфизики, изучающийэлектромагнитное полев наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющимиэлектрический заряд(электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений,электромагнитное излучение(в разных условиях, как свободное, так и в разнообразных случаях взаимодействии с веществом),электрический ток(вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся через посредство электромагнитного поля, и, следовательно, также является предметом электродинамики.

Чаще всего под термином электродинамика по умолчанию понимаетсяклассическая электродинамика, описывающая только непрерывные свойстваэлектромагнитного поляпосредством системыуравнений Максвелла; для обозначения современнойквантовой теорииэлектромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый терминквантовая электродинамика .

12 билет ПОНЯТИЕ СИММЕТРИИ В ЕСТЕСТВОЗНАНИИ

Теоре́ма Эмми Нётер утверждает, что каждой непрерывнойсимметриифизической системы соответствует некоторыйзакон сохранения. Так,закон сохранения энергиисоответствует однородностивремени,закон сохранения импульса- однородностипространства,закон сохранения момента импульса-изотропиипространства,закон сохранения электрического заряда-калибровочной симметриии т. д.

Теорема обычно формулируется для систем, обладающих функционаломдействия, и выражает собойинвариантностьлагранжианапо отношению к некоторойнепрерывной группепреобразований.

Теорема установлена в работах учёных гёттингенскойшколыД. Гильберта,Ф. КлейнаиЭ. Нётер. В наиболее распространенной формулировке была доказана Эмми Нётер в1918 году.

Типы симметрий, встречающиеся в математике и в естественных науках:

    двусторонняя симметрия- симметричность относительнозеркального отражения. (Билатеральная симметрия)

    симметрия n-го порядка- симметричность относительноповоротовна угол 360°/n вокруг какой-либо оси. Описывается группой Z n .

    аксиальная симметрия(радиальная симметрия,лучевая симметрия) - симметричность относительноповоротовна произвольный угол вокруг какой-либо оси. Описывается группойSO(2).

    сферическая симметрия- симметричность относительновращенийв трёхмерном пространстве на произвольные углы. Описывается группой SO(3). Локальная сферическая симметрия пространства или среды называется такжеизотропией.

    вращательная симметрия- обобщение предыдущих двух симметрий.

    трансляционная симметрия- симметричность относительносдвигов пространствав каком-либо направлении на некоторое расстояние.

    лоренц-инвариантность- симметричность относительно произвольных вращений впространстве-времениМинковского.

    калибровочная инвариантность- независимость вида уравнений калибровочных теорий вквантовой теории поля(в частности,теорий Янга - Миллса) при калибровочных преобразованиях.

    суперсимметрия- симметрия теории относительно заменыбозоновнафермионы.

    высшая симметрия- симметрия в групповом анализе.

    кайносимметрия- явлениеэлектронной конфигурации(термин введёнС. А. Щукаревым, открывшим его), которым обусловленавторичная периодичность(открытаЕ. В. Бироном).

13 билет СТО

Специальная теория относительности (СТО ; такжечастная теория относительности ) - теория, описывающая движение, законымеханикии пространственно-временные отношения при произвольныхскоростяхдвижения, меньших скорости света в вакууме, в том числе близких кскорости света. В рамках специальной теории относительностиклассическая механикаНьютонаявляется приближением низких скоростей. Обобщение СТО для гравитационных полей называетсяобщей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами , а скорости, при которых такие эффекты становятся существенными, -релятивистскими скоростями .

14 билет ОТО

О́бщая тео́рия относи́тельности (ОТО ;нем.allgemeine Relativitätstheorie ) -геометрическаятеориятяготения, развивающаяспециальную теорию относительности(СТО), опубликованнаяАльбертом Эйнштейномв1915-1916 годах. В рамках общей теории относительности, как и в другихметрических теориях, постулируется, что гравитационные эффекты обусловлены несиловым взаимодействиемтел иполей, находящихся впространстве-времени, а деформацией самого́ пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрическихтеорий тяготенияиспользованиемуравнений Эйнштейнадля связикривизныпространства-времени с присутствующей в нёмматерией.

ОТО в настоящее время - самая успешнаятеория гравитации, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальнойпрецессииперигелияМеркурия. Затем, в1919 году,Артур Эддингтонсообщил о наблюдении отклонения света вблизиСолнцав момент полногозатмения, что качественно и количественно подтвердило предсказания общей теории относительности . С тех пор многие другиенаблюдения и экспериментыподтвердили значительное количествопредсказаний теории, включаягравитационное замедление времени,гравитационное красное смещение,задержку сигнала в гравитационном полеи, пока лишь косвенно,гравитационное излучение . Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности - существованиячёрных дыр .

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный, во-первых, с тем, что её не удаётся переформулировать как классический предел квантовой теории, а во-вторых, с тем, что сама теория указывает границы своей применимости, так как предсказывает появление неустранимых физических расходимостей при рассмотрении чёрных дыр и вообщесингулярностейпространства-времени. Для решения этих проблем был предложен рядальтернативных теорий, некоторые из которых также являютсяквантовыми. Современные экспериментальные данные, однако, указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

15 билет РАСШИРЕНИЕ ВСЕЛЕННОЙ.ЗАКОН ХАББЛА

Расширение Вселенной - явление, состоящее в почтиоднородномиизотропномрасширении космического пространства в масштабах всейВселенной. Экспериментально расширение Вселенной наблюдается в виде выполнениязакона Хаббла. Началом расширения Вселенной наука считает так называемыйБольшой взрыв. Теоретически явление было предсказано и обоснованоА. Фридманомна раннем этапе разработкиобщей теорией относительностииз общефилософскихсоображений об однородности иизотропности Вселенной.

Зако́н Ха́ббла (закон всеобщего разбегания галактик) -эмпирический закон, связывающийкрасное смещениегалактики расстояние до нихлинейным образом :

где z -красное смещениегалактики,D - расстояние до неё,H 0 - коэффициент пропорциональности, называемыйпостоянной Хаббла. При малом значенииz выполняется приближённое равенствоcz=V r , гдеV r - скорость галактики вдоль луча зрения наблюдателя,c -скорость света. В этом случае закон принимает классический вид:

Этот возраст является характерным временем расширения Вселеннойна данный момент и с точностью до множителя 2 соответствует возрасту Вселенной, рассчитываемому постандартной космологической модели Фридмана.

16 билет МОДЕЛЬ ФРИДМАНА.СИНГУЛЯРНОСТЬ

Вселе́нная Фри́дмана (метрика Фридмана - Леметра - Робертсона - Уокера ) - одна из космологических моделей, удовлетворяющих полевым уравнениямобщей теории относительности, первая из нестационарных моделей Вселенной. ПолученаАлександром Фридманомв1922. Модель Фридмана описывает однородную изотропнуюнестационарную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной. Эта работа учёного стала основным теоретическим развитием ОТО после работ Эйнштейна 1915-1917 гг.

гравитационная сингулярность - областьпространства-времени, через которую нельзя продолжитьгеодезическую линию. Часто в нейкривизнапространственно-временного континуума обращается вбесконечность, либометрикаобладает иными патологическими свойствами, не допускающими физической интерпретации (например,космологическая сингулярность - состояние Вселенной в начальный моментБольшого взрыва, характеризующееся бесконечной плотностью и температурой вещества);

17 билет ТЕОРИЯ БОЛЬШОГО ВЗРЫВА.РЕЛИКТОВОЕ ИЗЛУЧЕНИЕ

Рели́ктовое излуче́ние (иликосмическое микроволновое фоновое излучение отангл.cosmic microwave background radiation ) - космическоеэлектромагнитное излучениес высокой степеньюизотропностии соспектром, характерным дляабсолютно чёрного теластемпературой2,725К.

Существование реликтового излучения было предсказано теоретически в рамках теории Большого взрыва. Хотя в настоящее время многие аспекты первоначальной теории Большого взрыва пересмотрены, основы, позволившие предсказатьтемпературуреликтового излучения, остались неизменны. Считается, что реликтовое излучение сохранилось с начальных этапов существованияВселеннойи равномерно её заполняет. Экспериментально его существование было подтверждено в1965 году. Наряду скосмологическим красным смещением, реликтовое излучение рассматривается как одно из главных подтверждений теории Большого взрыва

Большо́й взрыв (англ.Big Bang ) -космологическая модель, описывающая раннее развитие Вселенной , а именно - началорасширения Вселенной, перед которымВселеннаянаходилась всингулярном состоянии.

Обычно сейчас автоматически сочетают теорию Большого взрыва и модель горячей Вселенной, но эти концепции независимы и исторически существовало также представление охолодной начальной Вселеннойвблизи Большого взрыва. Именно сочетание теории Большого взрыва с теорией горячей Вселенной, подкрепляемое существованиемреликтового излучения, и рассматривается далее.

18 билет КОСМИЧЕСКИЙ ВАКУУМ

Ва́куум (отлат.vacuum - пустота) - пространство, свободное от вещества. В технике и прикладной физике под вакуумом понимают среду, содержащуюгазпридавленияхзначительно нижеатмосферного. Вакуум характеризуется соотношением междудлиной свободного пробегамолекул газаλи характерным размером средыd . Подd может приниматься расстояние между стенкамивакуумной камеры, диаметр вакуумного трубопровода и т. д. В зависимости от величины соотношенияλ/d различают низкий (), средний () и высокий () вакуум.

Следует различать понятия физического вакуума итехнического вакуума .

19 билет КВАНТОВАЯ МЕХАНИКА

Ква́нтовая меха́ника - разделтеоретической физики, описывающий физические явления, в которыхдействиесравнимо по величине спостоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказанийклассической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием повседневных объектов, квантовые эффекты в основном проявляются только в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению сэнергией покоямассивных частиц системы)квантовой теории поля.

Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать явления на уровне атомов, молекул, электроновифотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул,конденсированных сред, и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также другихэлементарных частиц, однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.

Основными понятиями квантовой кинематики являются понятия наблюдаемойисостояния.

Основные уравнения квантовой динамики - уравнение Шрёдингера,уравнение фон Неймана,уравнение Линдблада,уравнение Гейзенбергаиуравнение Паули.

Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов,теория вероятностей,функциональный анализ,операторные алгебры,теория групп.

Абсолютно чёрное тело - физическая идеализация, применяемая втермодинамике, тело, поглощающее всё падающее на негоэлектромагнитное излучениево всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметьцвет.Спектр излученияабсолютно чёрного тела определяется только еготемпературой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеютальбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди телСолнечной системысвойствами абсолютно чёрного тела в наибольшей степени обладаетСолнце.

Термин был введён Густавом Кирхгофомв1862 году.

20 билет ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ

Все задачи современной физики можно разделить на две группы: задачи физики классической и задачи физики квантовой, Изучая свойства обычных макроскопических тел, почти не приходится встречаться с квантовыми задачами, потому что квантовые свойства становятся ощутимыми лишь в микромире. Поэтому физика XIX в., исследовавшая лишь макроскопические тела, совершенно не знала квантовых процессов. Это и есть физика классическая. Для классической физики характерно, что она не учитывает атомистическое строение вещества. Ныне же развитие экспериментальной техники столь широко раздвинуло границы нашего знакомства с природой, что мы теперь знаем, и притом весьма детально, строгние отдельных атомов и молекул. Современная физика изучает атомное строение вещества и, потому принципы старой классической физики XIX в. должны были измениться в соответствии с новыми фактами, причем измениться коренным образом. Это изменение принципов и есть переход к физике квантовой

21 билет КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

Корпускуля́рно-волново́й дуали́зм -принцип, согласно которому любой объект может проявлять какволновые, так икорпускулярныесвойства. Был введён при разработкеквантовой механикидля интерпретации явлений, наблюдаемых в микромире, с точки зрения классических концепций. Дальнейшим развитием принципа корпускулярно-волнового дуализма стала концепцияквантованных полейвквантовой теории поля.

Как классический пример, светможно трактовать как поток корпускул (фотонов), которые во многих физических эффектах проявляют свойстваэлектромагнитных волн. Свет демонстрирует свойства волны в явленияхдифракциииинтерференциипри масштабах, сравнимых с длиной световой волны. Например, дажеодиночные фотоны, проходящие черездвойную щель, создают на экране интерференционную картину, определяемуюуравнениями Максвелла .

Тем не менее, эксперимент показывает, что фотон не есть короткий импульс электромагнитного излучения, например, он не может быть разделён на несколько пучков оптическими делителями лучей, что наглядно показал эксперимент, проведённый французскими физиками Гранжье, Роже и Аспэ в 1986 году . Корпускулярные свойства света проявляются прифотоэффектеи вэффекте Комптона. Фотон ведет себя и как частица, которая излучается или поглощается целиком объектами, размеры которых много меньше его длины волны (например,атомными ядрами), или вообще могут считаться точечными (например,электрон).

В настоящий момент концепция корпускулярно-волнового дуализма представляет лишь исторический интерес, так как служила только интерпретацией, способом описать поведение квантовых объектов, подбирая ему аналогии из классической физики. На деле квантовые объекты не являются ни классическими волнами, ни классическими частицами, приобретая свойства первых или вторых лишь в некотором приближении. Методологически более корректной является формулировка квантовой теории через интегралы по траекториям(пропагаторная), свободная от использования классических понятий.

22 билет ПОНЯТИЕ О СТРОЕНИЕ АТОМА.МОДЕЛИ АТОМА

    Модель атома Томсона (модель «Пудинг с изюмом»,англ.Plum pudding model ).Дж. Дж. Томсонпредложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри негоэлектронами. Была окончательно опровергнутаРезерфордомпосле проведённого им знаменитого опыта по рассеиваниюальфа-частиц.

    Ранняя планетарная модель атома Нагаоки . В 1904 году японский физикХантаро Нагаокапредложил модель атома, построенную по аналогии с планетойСатурн. В этой модели вокруг маленького положительного ядра по орбитам вращались электроны, объединённые в кольца. Модель оказалась ошибочной.

    Планетарная модель атома Бора-Резерфорда . В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобиепланетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие склассической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении сцентростремительным ускорениемдолжен излучатьэлектромагнитные волны, а, следовательно, терятьэнергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомовНильсу Борупришлось ввестипостулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданиюквантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

    А́том (отдр.-греч.ἄτομος- неделимый) - наименьшая химически неделимая частьхимического элемента, являющаяся носителем его свойств . Атом состоит изатомного ядраиэлектронов. Ядро атома состоит из положительнозаряженныхпротонови незаряженныхнейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называетсяионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов -изотопуэтого элемента.

    Атомы различного вида в разных количествах, связанные межатомными связями, образуютмолекулы.

23 билет ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ

Фундамента́льные взаимоде́йствия - качественно различающиеся типы взаимодействияэлементарных частици составленных из них тел.

На сегодня достоверно известно существование четырех фундаментальных взаимодействий:

    гравитационного

    электромагнитного

    сильного

    слабого

При этом электромагнитное и слабое взаимодействия являются проявлениями единого электрослабого взаимодействия .

Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено.

В физике механическая энергия делится на два вида - потенциальнуюикинетическую энергию. Причиной изменения движения тел (изменения кинетической энергии) является сила (потенциальная энергия) (см.второй закон Ньютона).Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил:сила тяжести,сила натяжения нити,сила сжатия пружины,сила столкновения тел,сила трения,сила сопротивления воздуха,сила взрываи т. д. Однако когда была выясненаатомарнаяструктура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной видмежатомного взаимодействия-электромагнитное, то, как оказалось, большинство этих сил - лишь различные проявленияэлектромагнитного взаимодействия. Одно из исключений составляет, например, сила тяжести, причиной которой являетсягравитационное взаимодействиемежду телами, обладающимимассой.

24 билет ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ И ИХ СВОЙСТВА

Элемента́рная части́ца - собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.

Следует иметь в виду, что некоторые элементарные частицы (электрон,фотон,кваркии т. д.) на данный момент считаются бесструктурными и рассматриваются как первичныефундаментальные частицы . Другие элементарные частицы (так называемыесоставные частицы -протон,нейтрони т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно (см.Конфайнмент).

Строение и поведение элементарных частиц изучается физикой элементарных частиц.

Основная статья: Кварки

Кварки и антикварки никогда не были обнаружены в свободном состоянии - это объясняется явлением конфайнмента. На основании симметрии между лептонами и кварками, проявляемой вэлектромагнитном взаимодействии, выдвигаются гипотезы о том, что эти частицы состоят из более фундаментальных частиц −преонов.

25 билет ПОНЯТИЕ БИФУРКАЦИИ.ТОЧКА БИФУРКАЦИИ

Бифуркация - это приобретение нового качества в движениях динамической системыпри малом изменении её параметров.

Центральным понятием теории бифуркации является понятие (не)грубой системы (см. ниже). Берётся какая-либо динамическая система и рассматривается такое (много)параметрическое семейство динамических систем, что исходная система получается в качестве частного случая - при каком-либо одном значении параметра (параметров). Если при значении параметров, достаточно близких к данному, сохраняется качественная картина разбиения фазового пространства на траектории, то такая система называется грубой . В противном случае, если такой окрестности не существует, то система называетсянегрубой .

Таким образом в пространстве параметров возникают области грубых систем, которые разделяются поверхностями, состоящими из негрубых систем. Теория бифуркаций изучает зависимость качественной картины при непрерывном изменении параметра вдоль некоторой кривой. Схема, по которой происходит изменение качественной картины называется бифуркационной диаграммой .

Основные методы теории бифуркаций - это методы теории возмущений. В частности, применяется метод малого параметра (Понтрягина).

Точка бифуркации - смена установившегося режима работы системы. Термин изнеравновесной термодинамикиисинергетики.

Точка бифуркации - критическое состояние системы, при котором система становится неустойчивой относительнофлуктуацийи возникает неопределенность: станет ли состояние системы хаотическим или она перейдет на новый, более дифференцированный и высокий уровень упорядоченности. Термин изтеории самоорганизации.

26 билет СИНЕРГЕТИКА – НАУКА ОБ ОТКРЫТЫХ САМООРГАНИЗУЮЩИХСЯ СИСТЕМАХ

Синерге́тика (отдр.-греч.συν-- приставка со значением совместности иἔργον- «деятельность») -междисциплинарноенаправление научных исследований, задачей которого является изучение природных явлений и процессов на основе принциповсамоорганизациисистем(состоящих изподсистем ). «…Наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы…» .

Синергетика изначально заявлялась как междисциплинарный подход, так как принципы, управляющие процессами самоорганизации, представляются одними и теми же (безотносительно природы систем), и для их описания должен быть пригоден общий математический аппарат.

С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций подобно тому, как некогдакибернетикаопределялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. п. и т. д. Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды. Аналогично - и расширительное толкование применимости методов синергетики также подвергается критике .

Основное понятие синергетики - определение структурыкаксостояния , возникающего в результате многовариантного и неоднозначного поведения таких многоэлементных структур или многофакторных сред, которые не деградируют к стандартному для замкнутых систем усреднению термодинамического типа, а развиваются вследствие открытости, притока энергии извне, нелинейности внутренних процессов, появления особыхрежимов с обострениеми наличия более одного устойчивого состояния. В обозначенных системах неприменимы нивторое начало термодинамики, нитеорема Пригожинао минимуме скорости производстваэнтропии, что может привести к образованию новых структур и систем, в том числе и более сложных, чем исходные.

Этот феноментрактуется синергетикой как всеобщий механизм повсеместно наблюдаемого в природе направленияэволюции: от элементарного и примитивного - к сложносоставному и более совершенному.

В отдельных случаях образование новых структур имеет регулярный, волновой характер и тогда они называются автоволновыми процессами (по аналогии с автоколебаниями).

27 билет ПОНЯТИЕ ЖИЗНЬ.ПРОБЛЕМА ПРОИСХОЖДЕНИЯ ЖИЗНИ

Жизнь - активная форма существованиясубстанции, в некотором смысле высшая по сравнению с её физической и химической формами существования ; совокупность физических и химических процессов, протекающих вклетке, позволяющих осуществлятьобмен веществиеё деление. Основной атрибут живой материи -генетическая информация, используемая длярепликации. Более или менее точно определить понятие «жизнь» можно только перечислением качеств, отличающих её от нежизни. Вне клетки жизнь не существует,вирусыпроявляют свойства живой материи только после переноса генетического материала в клетку [ источник не указан 268 дней ] . Приспосабливаясь к окружающей среде, живая клетка формирует всё многообразие живых организмов.

Также под словом «жизнь» понимают период существования отдельно взятого организма от момента возникновениядо егосмерти(онтогенез) .

В 1860 годупроблемой происхождения жизни занялся французский химикЛуи Пастер. Своими опытами он доказал, чтобактериивездесущи, и что неживые материалы легко могут быть заражены живыми существами, если их не стерилизовать должным образом. Учёный кипятил в воде различные среды, в которых могли бы образоваться микроорганизмы. При дополнительном кипячении микроорганизмы и их споры погибали. Пастер присоединил к S-образной трубке запаянную колбу со свободным концом. Споры микроорганизмов оседали на изогнутой трубке и не могли проникнуть в питательную среду. Хорошо прокипячённая питательная среда оставалась стерильной, в ней не обнаруживалось зарождения жизни, несмотря на то, что доступ воздуха был обеспечен.

В результате ряда экспериментов Пастер доказал справедливость теории биогенеза и окончательно опроверг теорию спонтанного зарождения .

28 билет КОНЦЕПЦИЯ ПРОИСХОЖДЕНИЯ ЖИЗНИ ОПАРИНА