Рисунки аэрозольными красками. Рисуем картины баллончиком

Экология познания. Одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal».

Многие из нас наверняка слышали о теории вероятностей – особом разделе математики, который изучает закономерности в случайных явлениях, случайные события, а также их свойства. И как раз одной из задач теории вероятностей является интереснейший и, казалось бы, противоречащий здравому смыслу парадокс Монти Холла, названный так в честь ведущего американского телешоу «Let’s Make A Deal». С этим парадоксом мы и хотим вас сегодня познакомить.

Определение парадокса Монти Холла

Как задача парадокс Монти Холла определяется в виде описаний вышеназванной игры, наиболее распространённым среди которых является формулировка, которая была опубликована журналом «Parade Magazine» в 1990 году.

Согласно ей, человек должен представить себя участником игры, где нужно выбрать одну дверь из трёх.

За одной дверью скрывается автомобиль, а за остальными – козы. Игрок должен выбрать одну дверь, к примеру, дверь №1.

А ведущий, знающий о том, что находится за каждой дверью, открывает одну из двух дверей, которые остались, например, дверь №3, за которой стоит коза.

После этого ведущий интересуется у игрока, не желает ли он изменить свой изначальный выбор и выбрать дверь №2?

Вопрос: повысятся ли шансы игрока на выигрыш, если он изменит свой выбор?

Но после публикации этого определения выяснилось, что задача игрока сформулирована несколько неверно, т.к. не обговорены все условия.

К примеру, ведущий игры может выбрать стратегию «адского Монти», предлагая изменить выбор только в том случае, если игрок изначально угадал дверь, за которой находится автомобиль.

И становится ясно, что изменение выбора приведёт к стопроцентному проигрышу.

Поэтому, наибольшую популярность получила постановка задачи с особым условием №6 из специальной таблицы:

  • Автомобиль может с одинаковой вероятностью находиться за каждой дверью
  • Ведущий всегда обязан открывать дверь с козой, кроме той которую выбрал игрок, и предлагать игроку возможность изменения выбора
  • Ведущий, имея возможность открыть одну из двух дверей, выбирает любую с одинаковой вероятностью

Представленный ниже разбор парадокса Монти Холла рассматривается именно с учётом этого условия. Итак, разбор парадокса.

Разбор парадокса Монти Холла

Есть три варианта развития событий:

Дверь 1

Дверь 2

Дверь 3

Результат, если менять выбор

Результат, если не менять выбор

Авто

Коза

Коза

Коза

Авто

Коза

Авто

Коза

Авто

Коза

Коза

Коза

Авто

Авто

Коза

Во время решения представленной задачи обычно приводятся такие рассуждения: ведущий в каждом случае убирает одну дверь с козой, следовательно, вероятность нахождения автомобиля за одной из двух закрытых дверей приравнивается к ½, независимо от того, какой выбор был сделан изначально. Однако это не так.

Смысл в том, что, делая первый выбор, участник разделяет двери на A (выбранную), B и C (оставшиеся). Шансы (P) на то, что машина стоит за дверью A, равны 1/3, а на то, что она за дверьми B и C равны 2/3. И шансы на успех при выборе дверей B и C вычисляются так:

P(B) = 2/3 * ½ = 1/3

P(C) = 2/3 * ½ = 1/3

Где ½ является условной вероятностью того, что машина находится именно за этой дверью, при условии, что машина не за той дверью, что выбрал игрок.

Ведущий, открывая заведомо проигрышную дверь из двух оставшихся, сообщает игроку 1 бит информации и изменяет тем самым условные вероятности для дверей B и C на значения 1 и 0. Теперь шансы на успех будут вычисляться так:

P(B) = 2/3*1 = 2/3

P(C) = 2/3*0 = 0

И получается, что если игрок изменит свой изначальный выбор, то его шанс на успех будет равен 2/3.

Объясняется это следующим образом: изменяя свой выбор после манипуляций ведущего, игрок выиграет, если изначально он выбрал дверь с козой, т.к. ведущий открывает вторую дверь с козой, а игроку остаётся лишь поменять двери. Выбрать же изначально дверь с козой можно двумя способами (2/3), соответственно, если игрок заменит двери, то выиграет с вероятностью 2/3. Именно из-за противоречия такого вывода интуитивному восприятию задача и получила статус парадокса.

Интуитивное восприятие говорит о следующем: когда ведущий открывает проигрышную дверь, перед игроком встаёт новая задача, на первый взгляд не связанная с изначальным выбором, т.к. коза за открываемой ведущим дверью будет там в любом случае, независимо от того, проигрышную или выигрышную дверь изначально выбрал игрок.

После открытия ведущим двери игрок должен снова сделать выбор – либо остановиться на прежней двери, либо выбрать новую. Это значит, что игрок делает именно новый выбор, а не меняет изначальный. И математическим решением рассматриваются две последовательные и связанные друг с другом задачи ведущего.

Но нужно иметь в виду, что ведущий открывает дверь именно из тех двух, которые остались, но не ту, что выбрал игрок. А значит, шанс на то, что машина находится за оставшейся дверью, увеличиваются, т.к. ведущий её не выбрал. Если же ведущий знает, что за выбранной игроком дверью стоит коза, всё-таки её откроет, он тем самым заведомо снизит вероятность того, что игрок выберет правильную дверь, ведь вероятность успеха станет равна ½. Но это уже игра по иным правилам.

А вот ещё одно объяснение: допустим, игрок играет по представленной выше системе, т.е. из дверей B или C всегда выбирает ту, что отличается от изначального выбора. Проиграет он в том случае, если изначально выбрал дверь с автомобилем, т.к. впоследствии выберет дверь с козой. В любом другом случае игрок выиграет, если изначально выбрал проигрышный вариант. Однако вероятность того, что изначально он выберет его, равна 2/3, из чего следует, что для успеха в игре сначала нужно сделать ошибку, вероятность которой в два раза больше вероятности правильного выбора.

Третье объяснение: представим, что дверей не 3, а 1000. После того как игрок сделал выбор, ведущий убирает 998 ненужных дверей – остаются только две двери: выбранная игроком и ещё одна. Но шанс на то, что машина за каждой из дверей совсем не ½. Скорее всего (0,999%) машина будет за той дверью, которую игрок не выбрал изначально, т.е. за дверью, отобранной из оставшихся после первого выбора 999 других. Примерно так же нужно и рассуждать при выборе из трёх дверей, пусть шансы на успех и снижаются и становятся 2/3.

И последнее объяснение – замена условий. Допустим, что вместо того, чтобы делать изначальный выбор, например, двери №1, и вместо открытия двери №2 или №3 ведущим, игрок должен сделать верный выбор с первого раза, если ему известно, что вероятность успеха с дверью №1 равна 33%, но об отсутствии машины за дверьми №2 и №3 он не знает ничего. Из этого следует, что шанс на успех с последней дверью будет составлять 66%, т.е. вероятность победы увеличивается вдвое.

Но каково будет положение дел, если ведущий станет вести себя иначе?

Разбор парадокса Монти Холла при другом поведении ведущего

В классической версии парадокса Монти Холла говорится, что ведущий шоу должен обязательно предоставить игроку выбор двери, вне зависимости от того, угадал игрок или нет. Но ведущий может и усложнить своё поведение. Например:

  • Ведущий предлагает игроку изменить свой выбор, если он изначально верный – игрок всегда проиграет, если согласится изменить выбор;
  • Ведущий предлагает игроку изменить свой выбор, если он изначально не верный – игрок всегда победит, если согласится;
  • Ведущий открывает дверь наугад, не зная, что где стоит – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий открывает дверь с козой, если игрок, действительно, выбрал дверь с козой – шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Ведущий всегда открывает дверь с козой. Если игрок выбрал дверь с машиной, левая дверь с козой будет открываться с вероятностью (q) равной p, а правая - с вероятностью q = 1-p. Если ведущий открыл дверь слева, то вероятность выигрыша рассчитывается как 1/(1+p). Если ведущий открыл дверь справа, то: 1/(1+q).Но вероятность того, что будет открыта дверь справа, равна: (1+q)/3;
  • Условия из примера выше, но p=q=1/2 - шансы игрока на выигрыш при смене двери всегда будут составлять 2/3;
  • Условия из примера выше, но p=1, а q=0. Если ведущий откроет дверь справа, то изменение игроком выбора приведёт к победе, если будет открыта дверь слева, то вероятность победы станет равна ½;
  • Если ведущий всегда будет открывать дверь с козой, когда игроком выбрана дверь с автомобилем, и с вероятностью ½, если игроком выбрана дверь с козой, то шансы игрока на выигрыш при смене двери всегда будут составлять ½;
  • Если игра повторяется множество раз, а машина находится за той или иной дверью всегда с одинаковой вероятностью, плюс с одинаковой вероятностью ведущим открывается дверь, но ведущий знает, где машина и всегда ставит игрока перед выбором, открывая дверь с козой, то вероятность победы будет равна 1/3;
  • Условия из примера выше, но ведущий вообще может не открывать дверь - шансы игрока на выигрыш будут составлять 1/3.

Таков парадокс Мотни Холла. Проверить его классический вариант на практике довольно просто, но гораздо сложнее будет провести эксперименты с изменением поведения ведущего. Хотя для дотошных практиков и это возможно. Но не важно, станете вы проверять парадокс Монти Холла на личном опыте или нет, теперь вы знаете некоторые секреты игр, проводящихся с людьми на разных шоу и телепередачах, а также интересные математические закономерности.

Кстати, это интересно: парадокс Монти Холла упоминается в фильме Роберта Лукетича «Двадцать одно», романе Сергея Лукьяненко «Недотёпа», телесериале «4исла», повести Марка Хэддона «Загадочное ночное убийство собаки», комиксе «XKCD», а также был «героем» одной из серий телешоу «Разрушители легенд». опубликовано

Присоединяйтесь к нам в

Теория вероятностей - раздел математики, который готов запутать самих математиков. В отличие от остальных, точных и незыблемых догм этой науки, данная область кишит странностями и неточностями. В этот раздел совсем недавно добавили так сказать новый параграф - парадокс Монти Холла. Это, в общем, задача, но решается она совсем не так, как привычные нам школьные или университетские.

История происхождения

Над парадоксом Монти Холла люди ломают свои головы, начиная с далекого 1975 года. Но начать стоит с 1963. Именно тогда на экраны вышло телешоу под названием Let"s make a deal, что переводится как "Давайте заключим сделку". Его ведущим стал никто иной как Монти Холл, который подкидывал зрителям порой неразрешимые задачки. Одной из наиболее ярких стала та, которую он представил в 1975 году. Задача стала частью математической теории вероятности и парадоксов, которые укладываются в ее рамки. Стоит также отметить, что данное явление стало причиной сильных дискуссий и жесткой критики со стороны ученых. Парадокс Монти Холла был опубликован в журнале Parade в 1990 году, и с тех пор стал еще более обсуждаемым и спорным вопросом всех времен и народов. Ну а теперь переходим непосредственно к его формулировке и трактовке.

Формулировка проблемы

Существует множество трактовок данного парадокса, но мы решили представить вам классическую, которая была показана в самой программе. Итак, перед вами три двери. За одной из них находится автомобиль, за двумя другими по одной козе. Ведущий предлагает вам выбрать одну из дверей, и, допустим, вы останавливаетесь на номере 1. Пока что вы не знаете, что за этой самой первой дверью, так как вам открывают третью, и показывают, что за ней коза. Следовательно, вы пока что не проиграли, ведь вы не выбрали ту дверь, которая скрывает проигрышный вариант. Следовательно, ваши шансы на получение машины возрастают.

Но тут ведущий предлагает вам изменить решение. Перед вами уже две двери, за одной коза, за другой желанный приз. Именно в этом и заключается суть проблемы. Кажется, что какую бы дверь из двух вы ни выбрали, шансы будут 50 на 50. Но на самом деле, если вы поменяете решение, вероятность того, что вы победите, станет больше. Как так?

Первый выбор, который вы делаете в этой игре - случайный. Вы никак не можете даже отдаленно догадываться, за какой из трех дверей спрятан приз, поэтому рандомно указываете на первую попавшуюся. Ведущий же в свою очередь знает, где что находится. У него есть дверь с призом, дверь, на которую указали вы, и третья без приза, которую он вам и открывает в качестве первой подсказки. Вторая же подсказка кроется в самом его предложении сменить выбор.

Теперь вы уже будете выбирать не наугад одну из трех, а сможете даже изменить свое решение, чтобы получить желаемый приз. Именно предложение ведущего дает человеку веру в то, что автомобиль находится действительно не за той дверью, которую он выбрал, а за другой. В этом и заключается вся суть парадокса, так как, по сути, выбирать (хоть уже из двух, а не из трех) все равно приходится наугад, но шансы на победу возрастают. Как показывает статистика, из 30-ти игроков, которые поменяли свое решение, машину выиграли 18. А это 60%. А из тех же 30-ти человек, которые решение не изменили - всего 11, то есть 36%.

Трактовка в цифрах

Теперь дадим парадоксу Монти Холла более точное определение. Первый выбор игрока разбивает двери на две группы. Вероятность того, что приз расположен за дверью, которую вы выбрали, составляет 1/3, а за теми дверьми, что остались 2/3. Ведущий далее открывает одну из дверей второй группы. Таким образом он переносит всю оставшуюся вероятность, 2/3, на одну дверь, которую вы не выбрали и которую он не открывал. Логично, что после таких расчетов выгоднее будет сменить свое решение. Но при этом важно помнить, что шанс проиграть все-таки имеется. Порой ведущие лукавят, так как вы изначально можете ткнуть на правильную, призовую дверь, а после от нее добровольно отказаться.

Все мы привыкли к тому, что математика, как точная наука, идет рука об руку со здравым смыслом. Тут дело делают цифры, а не слова, точные формулы, а не туманные размышления, координаты, а не относительные данные. Но ее новый раздел под названием теория вероятностей взорвал весь привычный шаблон. Задачи из этой области, как нам кажется, не вкладываются в рамки здравого смысла и полностью противоречат всем формулам и вычислениям. Предлагаем ниже ознакомиться с другими парадоксами теории вероятности, которые имеют нечто общее с тем, который был описан выше.

Парадокс мальчика и девочки

Задачка, на первый взгляд, абсурдная, но она строго подчиняется математической формуле и имеет два варианта решения. Итак, у некого мужчины двое детей. Один из них наверняка мальчик. Какова вероятность того, что мальчиком окажется второй?

Вариант 1. Мы рассматриваем все комбинации двоих детей в семье:

  • Девочка/девочка.
  • Девочка/мальчик.
  • Мальчик/девочка.
  • Мальчик/мальчик.

Первая комбинации нам очевидно не подходит, поэтому, исходя из трех последних, мы получаем вероятность в 1/3 того, что вторым ребенком окажется маленький мужчина.

Вариант 2. Если же представить себе такой случай на практике, откинув дроби и формулы, то, исходя из того факта, что на Земле есть только два пола, вероятность того, что вторым ребенком будет мальчик, составляет 1/2.

Этот опыт показывает нам, как лихо можно манипулировать статистикой. Итак, "спящей красавице" вкалывают снотворное и кидают монетку. Если выпадает орел, то ее будят и эксперимент прекращается. Если же выпадает решка, то ее будят, сразу делая второй укол, и она забывает о том, что просыпалась, а после этого вновь пробуждают лишь на второй день. После полного пробуждения "красавице" неизвестно, в какой день она открыла глаза, или какова вероятность того, что монета упала решкой. По первому варианту решения вероятность выпадения решки (или орла) составляет 1/2. Суть второго варианта заключается в том, что, если проводить эксперимент 1000 раз, то в случае с орлом "красавицу" будут будить 500 раз, а с редкой - 1000. Теперь уже вероятность выпадения решки составляет 2/3.

Представьте, что некий банкир предлагает вам выбрать одну из трёх закрытых коробочек. В одной из них 50 центов, в другой - один доллар, в третьей - 10 тысяч долларов. Какую выберете, та вам и достанется в качестве приза.

Вы выбираете наугад, скажем, коробочку №1. И тут банкир (который, естественно, знает, где что) прямо на ваших глазах открывает коробочку с одним долларом (допустим, это №2), после чего предлагает вам поменять изначально выбранную коробочку №1 на коробочку №3.

Стоит ли вам менять своё решение? Увеличатся ли при этом ваши шансы получить 10 тысяч?

Это и есть парадокс Монти Холла — задача теории вероятности, решение которой, на первый взгляд, противоречит здравому смыслу. Над этой задачей люди ломают головы с 1975 года.

Парадокс получил название в честь ведущего популярного американского телешоу «Let’s Make a Deal». В этом телешоу были похожие правила, только участники выбирали двери, за двумя из которых прятались козы, за третьей - Кадиллак.

Большинство игроков рассуждали, что после того, как закрытых дверей осталось две и за одной из них находится Кадиллак, то шансы его получить 50-50.Очевидно, что когда ведущий открывает одну дверь и предлагает вам поменять своё решение, он начинает новую игру. Поменяете вы решение или не поменяете, ваши шансы всё равно будут равны 50 процентам. Так ведь?

Оказывается, что нет. На самом деле, поменяв решение, вы удвоите шансы на успех. Почему?

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие — принятие решения игроком о смене двери, второе событие — открытие лишней двери. Это допустимо, так как открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье). Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами. Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери. Одну открывает ведущий, а вторую сам игрок.

Попробуем дать «самое понятное» объяснение. Переформулируем задачу: Честный ведущий объявляет игроку, что за одной из трех дверей — автомобиль, и предлагает ему сначала указать на одну из дверей, а после этого выбрать одно из двух действий: открыть указанную дверь (в старой формулировке это называется «не изменять своего выбора») или открыть две другие (в старой формулировке это как раз и будет «изменить выбор». Подумайте, здесь и заключен ключ к пониманию!). Ясно, что игрок выберет второе из двух действий, так как вероятность получения автомобиля в этом случае в два раза выше. А та мелочь, что ведущий ещё до выбора действия «показал козу», никак не помогает и не мешает выбору, ведь за одной из двух дверей всегда найдется коза и ведущий обязательно её покажет при любом ходе игры, так что игрок может на эту козу и не смотреть. Дело игрока, если он выбрал второе действие — сказать «спасибо» ведущему за то, что он избавил его от труда самому открывать одну из двух дверей, и открыть другую. Ну, или ещё проще. Представим себе эту ситуацию с точки зрения ведущего, который проделывает подобную процедуру с десятками игроков. Поскольку он прекрасно знает, что находится за дверями, то, в среднем, в двух случаях из трёх, он заранее видит, что игрок выбрал «не ту» дверь. Поэтому уж для него точно нет никакого парадокса в том, что, правильная стратегия состоит в изменении выбора после открытия первой двери: ведь тогда в тех же двух случаях из трёх игрок будет уезжать со студии на новой машине.

Наконец, самое «наивное» доказательство. Пусть тот, кто стоит на своем выборе, называется «Упрямым», а тот, кто следует указаниям ведущего, зовется «Внимательным». Тогда Упрямый выигрывает, если он изначально угадал автомобиль (1/3), а Внимательный — если он вначале промахнулся и попал на козу (2/3). Ведь только в этом случае он потом укажет на дверь с автомобилем.

Монти Холл, продюсер и ведущий шоу Let’s Make a Deal с 1963-го по 1991 год.

В 1990 году эта задача и её решение были опубликованы в американском журнале “Parade”. Публикация вызвала шквал возмущённых отзывов читателей, многие из которых обладали научными степенями.

Главная претензия заключалась в том, что не все условия задачи были оговорены, и любой нюанс мог повлиять на результат. Например, ведущий мог предложить поменять решение только в том случае, если игрок первым ходом выбрал автомобиль. Очевидно, что смена первоначального выбора в такой ситуации приведёт к гарантированному проигрышу.

Однако за всё время существования телешоу Монти Холла люди, менявшие решение, действительно выигрывали вдвое чаще:

Из 30 игроков, поменявших первоначальное решение, Кадиллак выиграли 18 - то есть 60%

Из 30 игроков, которые остались при своём выборе, Кадиллак выиграли 11 - то есть примерно 36%

Так что приведённые в решении рассуждения, какими бы нелогичными они не казались, подтверждаются практикой.

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 — козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы — они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей — 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними — 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 1 %.

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода Более формально сценарий игры может быть описан c помощью дерева принятия решений. В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Если же вам непонятно все равно, плюньте на формулы и просто проверьте всё статистически . Еще один вариант объяснения:

  • Игрок, чья стратегия заключалась бы в том, чтобы каждый раз менять выбранную дверь, будет проигрывать только в том случае, если он изначально выбирает дверь, за которой находится автомобиль.
  • Поскольку вероятность выбрать автомобиль с первой попытки составляет один к трём (или 33%), то шанс не выбрать автомобиль, если игрок будет менять свой выбор, также равен один к трём (или 33%).
  • Это означает, что игрок, который использовал стратегию менять дверь, выиграет с вероятностью 66 % или два к трём.
  • Это удвоит шансы на выигрыш игрока, чья стратегия - каждый раз не менять свой выбор.

Всё ещё не верите? Предположим, что вы выбрали дверь №1. Здесь представлены все возможные варианты того, что может произойти в этом случае.