Скорость химической реакции: условия, примеры. Факторы, влияющие на скорость химической реакции

ОПРЕДЕЛЕНИЕ

Химическая кинетика – учение о скоростях и механизмах химических реакций.

Изучение скоростей протекания реакций, получение данных о факторах, влияющих на скорость химической реакции, а также изучение механизмов химических реакций осуществляют экспериментально.

ОПРЕДЕЛЕНИЕ

Скорость химической реакции – изменение концентрации одного из реагирующих веществ или продуктов реакции в единицу времени при неизменном объеме системы.

Скорость гомогенной и гетерогенной реакций определяются различно.

Определение меры скорости химической реакции можно записать в математической форме. Пусть – скорость химической реакции в гомогенной системе, n B – число моле какого-либо из получающихся при реакции веществ, V – объем системы, – время. Тогда в пределе:

Это уравнение можно упростить – отношение количества вещества к объему представляет собой молярную концентрацию вещества n B /V = c B , откуда dn B / V = dc B и окончательно:

На практике измеряют концентрации одного или нескольких веществ в определенные промежутки времени. Концентрации исходных веществ со временем уменьшаются, а концентрации продуктов – увеличиваются (рис. 1).


Рис. 1. Изменение концентрации исходного вещества (а) и продукта реакции (б) со временем

Факторы, влияющие на скорость химической реакции

Факторами, оказывающими влияние на скорость химической реакции, являются: природа реагирующих веществ, их концентрации, температура, присутствие в системе катализаторов, давление и объем (в газовой фазе).

С влиянием концентрации на скорость химической реакции связан основной закон химической кинетики – закон действующих масс (ЗДМ): скорость химической реакции прямопропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов. ЗДМ не учитывает концентрацию веществ в твердой фазе в гетерогенных системах.

Для реакции mA +nB = pC +qD математическое выражение ЗДМ будет записываться:

K × C A m × C B n

K × [A] m × [B] n ,

где k – константа скорости химической реакции, представляющая собой скорость химической реакции при концентрации реагирующих веществ 1моль/л. В отличие от скорости химической реакции, k не зависит от концентрации реагирующих веществ. Чем выше k, тем быстрее протекает реакция.

Зависимость скорости химической реакции от температуры определяется правилом Вант-Гоффа. Правило Вант-Гоффа: при повышении температуры на каждые десять градусов скорость большинства химических реакций увеличивается примерно в 2 – 4 раза. Математическое выражение:

(T 2) = (T 1) × (T2-T1)/10 ,

где – температурный коэффициент Вант-Гоффа, показывающий во сколько раз увеличилась скорость реакции при повышении температуры на 10 o С.

Молекулярность и порядок реакции

Молекулярность реакции определяется минимальным числом молекул, одновременно вступающих во взаимодействие (участвующих в элементарном акте). Различают:

— мономолекулярные реакции (примером могут служить реакции разложения)

N 2 O 5 = 2NO 2 + 1/2O 2

K × C, -dC/dt = kC

Однако, не все реакции, подчиняющиеся этому уравнению мономолекулярны.

— бимолекулярные

CH 3 COOH + C 2 H 5 OH = CH 3 COOC 2 H 5 + H 2 O

K × C 1 × C 2 , -dC/dt = k × C 1 × C 2

— тримолекулярные (встречаются очень редко).

Молекулярность реакции определяется ее истинным механизмом. По записи уравнения реакции определить ее молекулярность нельзя.

Порядок реакции определяется по виду кинетического уравнения реакции. Он равен сумме показателей степеней концентрации в этом уравнении. Например:

CaCO 3 = CaO + CO 2

K × C 1 2 × C 2 – третий порядок

Порядок реакции может быть дробным. В таком случае он определяется экспериментально. Если реакция протекает в одну стадию, то порядок реакции и ее молекулярность совпадают, если в несколько стадий, то порядок определяется самой медленной стадией и равен молекулярности этой реакции.

Примеры решения задач

ПРИМЕР 1

Понятие «скорость» довольно часто встречается в литературе. Из физики известно, что чем большее расстояние преодолеет материальное тело (человек, поезд, космический корабль) за определённый отрезок времени, тем выше скорость этого тела.

А как измерить скорость химической реакции, которая никуда «не идёт» и никакое расстояние не преодолевает? Для того чтобы ответить на этот вопрос, следует выяснить, а что всегда меняется в любой химической реакции? Поскольку любая химическая реакция - это процесс изменения вещества, то исходное вещество в ней исчезает, превращаясь в продукты реакции. Таким образом, в ходе химической реакции всегда изменяется количество вещества, уменьшается число частиц исходных веществ, а значит, и его концентрация (С) .

Задание ЕГЭ. Скорость химической реакции пропорциональна изменению:

  1. концентрации вещества в единицу времени;
  2. количеству вещества в единице объёма;
  3. массы вещества в единице объёма;
  4. объёму вещества в ходе реакции.

А теперь сравните свой ответ с правильным:

скорость химической реакции равна изменению концентрации реагирующего вещества в единицу времени

где С 1 и С 0 - концентрации реагирующих веществ, конечная и начальная, соответственно; t 1 и t 2 - время эксперимента, конечный и начальный отрезок времени, соответственно.

Вопрос. Как вы считаете, какая величина больше: С 1 или С 0 ? t 1 или t 0 ?

Поскольку реагирующие вещества всегда расходуются в данной реакции, то

Таким образом, отношение этих величин всегда отрицательно, а скорость не может быть величиной отрицательной. Поэтому в формуле появляется знак «минус», который одновременно говорит о том, что скорость любой реакции с течением времени (при неизменных условиях) всегда уменьшается .

Итак, скорость химической реакции равна:

Возникает вопрос, в каких единицах следует измерять концентрацию реагирующих веществ (С) и почему? Для того чтобы ответить на него, нужно понять, какое условие является главным для протекания любой химической реакции.

Для того чтобы частицы прореагировали, необходимо, чтобы они, как минимум, столкнулись. Поэтому чем выше число частиц* (число молей) в единице объёма, тем чаще они сталкиваются, тем выше вероятность химической реакции .

* О том, что такое «моль», читай в уроке 29.1.

Поэтому при измерении скоростей химических процессов используют молярную концентрацию веществ в реагирующих смесях.

Молярная концентрация вещества показывает, сколько молей его содержится в 1 литре раствора

Итак, чем больше молярная концентрация реагирующих веществ, тем больше частиц в единице объёма, тем чаще они сталкиваются, тем выше (при прочих равных условиях) скорость химической реакции. Поэтому основным законом химической кинетики (это наука о скорости химических реакций) является закон действующих масс .

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ.

Для реакции типа А + В →… математически этот закон можно выразить так:

Если реакция более сложная, например, 2A + B → или, что тоже самое А + А + В → …, то

Таким образом, в уравнении скорости появился показатель степени « два » , который соответствует коэффициенту 2 в уравнении реакции. Для более сложных уравнений большие показатели степеней, как правило, не используют. Это связано с тем, что вероятность одновременного столкновения, скажем, трёх молекул А и двух молекул В крайне мала. Поэтому многие реакции протекают в несколько стадий, в ходе которых сталкивается не более трёх частиц, и каждая стадия процесса протекает с определённой скоростью. Эту скорость и кинетическое уравнение скорости для неё определяют экспериментально.

Вышеприведённые уравнения скорости химической реакции (3) или (4) справедливы только для гомогенных реакций, т. е. для таких реакций, когда реагирующие вещества не разделяет поверхность. Например, реакция происходит в водном растворе, и оба реагирующих вещества хорошо растворимы в воде или для любой смеси газов.

Другое дело, когда происходит гетерогенная реакция. В этом случае между реагирующими веществами имеется поверхность раздела, например, углекислый газ реагирует с водным раствором щёлочи. В этом случае любая молекула газа с равной вероятностью может вступить в реакцию, поскольку эти молекулы быстро и хаотично двигаются. А частицы жидкого раствора? Эти частицы двигаются чрезвычайно медленно, и те частицы щёлочи, которые находятся «на дне», практически не имеют шансов вступить в реакцию с углекислым газом, если раствор не перемешивать постоянно. Реагировать будут только те частицы, которые «лежат на поверхности». Значит, для гетерогенных реакций -

скорость реакции зависит от величины площади поверхности раздела, которая увеличивается при измельчении.

Поэтому очень часто реагирующие вещества измельчают (например, растворяют в воде), пищу тщательно пережёвывают, а в процессе приготовления - растирают, пропускают через мясорубку и т. д. Не измельчённый пищевой продукт практически не усваивается!

Таким образом, с максимальной скоростью (при прочих равных условиях) протекают гомогенные реакции в растворах и между газами, (если эти газы реагируют при н. у.), причём в растворах, где молекулы располагаются «рядом», а измельчение такое же, как в газах (и даже больше!), - скорость реакции выше.

Задание ЕГЭ. Какая из реакций протекает с наибольшей скоростью при комнатной температуре:

  1. углерода с кислородом;
  2. железа с соляной кислотой;
  3. железа с раствором уксусной кислоты
  4. растворов щёлочи и серной кислоты.

В данном случае нужно найти, какой процесс является гомогенным.

Следует отметить, что скорость химической реакции между газами или гетерогенной реакции, в которой участвует газ, зависит и от давления, поскольку при увеличении давления газы сжимаются, и концентрация частиц увеличивается (см. формулу 2). На скорость реакций, в которых газы не участвуют, изменение давления влияния не оказывает.

Задание ЕГЭ. На скорость химической реакции между раствором кислоты и железом не оказывает влияния

  1. концентрация кислоты;
  2. измельчение железа;
  3. температура реакции;
  4. увеличение давления.

И наконец, скорость реакции зависит и от реакционной способности веществ. Например, если с веществом реагирует кислород, то при прочих равных условиях, скорость реакции будет выше, чем при взаимодействии этого же вещества с азотом. Дело в том, что реакционная способность кислорода заметно выше, чем у азота. Причину этого явления мы рассмотрим в следующей части Самоучителя (урок 14).

Задание ЕГЭ. С большей скоростью идёт химическая реакция между соляной кислотой и

  1. медью;
  2. железом;
  3. магнием;
  4. цинком.

Следует отметить, что далеко не каждое столкновение молекул приводит к их химическому взаимодействию (химической реакции). В газовой смеси водорода и кислорода при обычных условиях происходит несколько миллиардов столкновений в секунду. Но первые признаки реакции (капельки воды) появятся в колбе только через несколько лет. В таких случаях говорят, что реакция практически не идёт . Но она возможна , иначе чем объяснить тот факт, что при нагревании этой смеси до 300 °C колба быстро запотевает, а при температуре 700 °C прогремит страшный взрыв! Недаром смесь водорода и кислорода называют «гремучим газом».

Вопрос. Как вы полагаете, почему скорость реакции так резко возрастает при нагревании?

Скорость реакции возрастает потому, что, во-первых, увеличивается число столкновений частиц, а во-вторых, увеличивается число активных столкновений. Именно активные соударения частиц приводят к их взаимодействию. Для того чтобы произошло такое соударение, частицы должны обладать определённым запасом энергии.

Энергия, которой должны обладать частицы, для того чтобы произошла химическая реакция, называется энергией активации.

Эта энергия расходуется на преодоление сил отталкивания между внешними электронами атомов и молекул и на разрушение «старых» химических связей.

Возникает вопрос: как повысить энергию реагирующих частиц? Ответ простой - повысить температуру, поскольку при повышении температуры возрастает скорость движения частиц, а, следовательно, их кинетическая энергия.

Правило Вант-Гоффа* :

при повышении температуры на каждые 10 градусов скорость реакции возрастает в 2–4 раза.

ВАНТ-ГОФФ Якоб Хендрик (30.08.1852–1.03.1911) - голландский химик. Один из основателей физической химии и стереохимии. Нобелевская премия по химии № 1 (1901).

Следует заметить, что это правило (не закон!) было установлено экспериментально для реакций, «удобных» для измерения, то есть для таких реакций, которые протекали не слишком быстро и не слишком медленно и при температурах, доступных экспериментатору (не слишком высоких и не слишком низких).

Вопрос . Как вы полагаете, как можно быстрее приготовить картофель: отварить его или обжарить в слое масла?

Для того чтобы как следует уяснить себе смысл описываемых явлений, можно сравнить реагирующие молекулы с группой учеников, которым предстоит прыгать в высоту. Если им поставлен барьер высотой 1 м, то ученикам придётся как следует разбежаться (повысить свою «температуру»), чтобы преодолеть барьер. Тем не менее всегда найдутся ученики («неактивные молекулы»), которые взять этот барьер не смогут.

Что делать? Если придерживаться принципа: «Умный в гору не пойдёт, умный гору обойдёт», то следует просто опустить барьер, скажем, до 40 см. Тогда любой ученик сможет преодолеть барьер. На молекулярном уровне это означает: для того чтобы увеличить скорость реакции, нужно уменьшить энергию активации в данной системе .

В реальных химических процессах эту функцию выполняет катализатор.

Катализатор - это вещество, которое изменяет скорость химической реакции, оставаясь при этом неизменным к концу химической реакции.

Катализатор участвует в химической реакции, взаимодействуя с одним или несколькими исходными веществами. При этом образуются промежуточные соединения, и изменяется энергия активации. Если промежуточное соединение более активно (активный комплекс), то энергия активации понижается, а скорость реакции увеличивается.

Например, реакция между SO 2 и О 2 происходит очень медленно, при нормальных условиях практически не идёт . Но в присутствии NO скорость реакции резко возрастает. Сначала NO очень быстро реагирует с O 2:

полученный диоксид азота быстро реагирует с оксидом серы (IV):

Задание 5.1. Покажите на этом примере, какое вещество является катализатором, а какое - активным комплексом.

И наоборот, если образуются более пассивные соединения, то энергия активации может возрасти настолько, что реакция при данных условиях практически происходить не будет. Такие катализаторы называются ингибиторами .

На практике применяются оба типа катализаторов. Так особые органические катализаторы - ферменты - участвуют абсолютно во всех биохимических процессах: переваривании пищи, сокращении мышц, дыхании. Без ферментов невозможно существование жизни!

Ингибиторы необходимы для того, чтобы защитить металлические изделия от коррозии, жиросодержащие пищевые продукты от окисления (прогоркания). Некоторые лекарства также содержат ингибиторы, которые угнетают жизненные функции микроорганизмов и тем самым уничтожают их.

Катализ может быть гомогенным и гетерогенным. Примером гомогенного катализа служит действие NO (это катализатор) на процесс окисления диоксида серы. Примером гетерогенного катализа может служить действие нагретой меди на спирт:

Эта реакция идёт в две стадии:

Задание 5.2. Определите, какое вещество в этом случае является катализатором? Почему этот вид катализа называется гетерогенным?

На практике чаще всего используется гетерогенный катализ, где катализаторами служат твёрдые вещества: металлы, их оксиды и др. На поверхности этих веществ имеются особые точки (узлы кристаллической решётки), где, собственно и происходит каталитическая реакция. Если эти точки закрыть посторонними веществом, то катализ прекращается. Это вещество, губительное для катализатора, называется каталитическим ядом . Другие вещества - промоторы - наоборот, усиливают каталитическую активность.

Катализатор может изменить направление химической реакции, то есть, меняя катализатор, можно получать разные продукты реакции. Так, из спирта C 2 H 5 OH в присутствии оксидов цинка и алюминия можно получить бутадиен, а в присутствии концентрированной серной кислоты - этилен.

Таким образом, в ходе химической реакции изменяется энергия системы. Если в ходе реакции энергия выделяется в виде теплоты Q , такой процесс называется экзотермическим :

Для эндо термических процессов теплота поглощается , т. е. тепловой эффект Q < 0 .

Задание 5.3. Определить, какой из предложенных процессов экзотермический, а какой - эндотермический:

Уравнение химической реакции, в котором указан тепловой эффект , называется термохимическим уравнением реакции. Для того чтобы составить такое уравнение, необходимо рассчитать тепловой эффект на 1 моль реагирующего вещества.

Задача. При сжигании 6 г магния выделилось 153,5 кДж теплоты. Составить термохимическое уравнение этой реакции.

Решение. Составим уравнение реакции и укажем НАД формулами, что дано:

Составив пропорцию, найдём искомый тепловой эффект реакции:

Термохимическое уравнение этой реакции:

Такие задачи приведены в заданиях большинства вариантов ЕГЭ! Например.

Задание ЕГЭ. Согласно термохимическому уравнению реакции

количество теплоты, выделившейся при сжигании 8 г метана, равно:

Обратимость химических процессов. Принцип Ле-Шателье

* ЛЕ ШАТЕЛЬЕ Анри Луи (8.10.1850–17.09.1936) - французский физико-химик и металловед. Сформулировал общий закон смещения равновесия (1884).

Реакции бывают обратимыми и необратимыми.

Необратимыми называют такие реакции, для которых не существует условий, при которых возможен обратный процесс.

Примером таких реакций могут служить реакции, которые происходят при скисании молока, или когда сгорела вкусная котлета. Как невозможно пропустить мясной фарш назад через мясорубку (и получить снова кусок мяса), также невозможно «реанимировать» котлету или сделать свежим молоко.

Но зададим себе простой вопрос: является ли необратимым процесс:

Для того чтобы ответить на этот вопрос, попробуем вспомнить, можно ли осуществить обратный процесс? Да! Разложение известняка (мела) с целью получить негашёную известь СаО используется в промышленном масштабе:

Таким образом реакция является обратимой, так как существуют условия, при которых с ощутимой скоростью протекают оба процесса:

Более того, существуют условия, при которых скорость прямой реакции равна скорости обратной реакции .

В этих условиях устанавливается химическое равновесие. В это время реакция не прекращается, но число полученных частиц равно числу разложившихся частиц. Поэтому в состоянии химического равновесия концентрации реагирующих частиц не изменяются . Например, для нашего процесса в момент химического равновесия

знак означает равновесная концентрация.

Возникает вопрос, что произойдёт с равновесием, если повысить или понизить температуру, изменить другие условия? Ответить на подобный вопрос можно, зная принцип Ле-Шателье :

если изменить условия (t, p, c), при которых система находится в состоянии равновесия, то равновесие сместится в сторону того процесса, который противодействует изменению .

Другими словами, равновесная система всегда противится любому воздействию извне, как противится воле родителей капризный ребёнок, который делает «всё наоборот».

Рассмотрим пример. Пусть установилось равновесие в реакции получения аммиака:

Вопросы. Одинаково ли число молей реагирующих газов до и после реакции? Если реакция идёт в замкнутом объёме, когда давление больше: до или после реакции?

Очевидно, что данный процесс происходит с уменьшением числа молекул газов, значит, давление в ходе прямой реакции уменьшается. В обратной реакции - наоборот, давление в смеси увеличивается .

Зададим себе вопрос, что произойдёт, если в этой системе повысить давление? По принципу Ле-Шателье пойдёт та реакция, которая «делает наоборот», т. е. понижает давление. Это - прямая реакция: меньше молекул газа - меньше давление.

Итак, при повышении давления равновесие смещается в сторону прямого процесса, где давление понижается, так как уменьшается число молекул газов.

Задание ЕГЭ. При повышении давления равновесие смещается вправо в системе:

Если в результате реакции число молекул газов не меняется, то изменение давления на положение равновесия не оказывает влияние.

Задание ЕГЭ. Изменение давления оказывает влияние на смещение равновесия в системе:

Положение равновесия этой и любой другой реакции зависит от концентрации реагирующих веществ: увеличивая концентрацию исходных веществ и уменьшая концентрацию полученных веществ, мы всегда смещаем равновесие в сторону прямой реакции (вправо).

Задание ЕГЭ.

сместится влево при:

  1. повышении давления;
  2. понижении температуры;
  3. повышении концентрации СО;
  4. понижении концентрации СО.

Процесс синтеза аммиака экзотермичен, то есть сопровождается выделением теплоты, то есть повышением температуры в смеси.

Вопрос. Как сместится равновесие в этой системе при понижении температуры ?

Рассуждая аналогично, делаем вывод : при понижении температуры равновесие сместится в сторону образования аммиака, так как в этой реакции теплота выделяется, а температура повышается.

Вопрос. Как изменится скорость химической реакции при понижении температуры?

Очевидно, что при понижении температуры резко понизится скорость обеих реакций, т. е. придётся очень долго ждать, когда же установится желаемое равновесие. Что делать? В этом случае необходим катализатор . Он хотя и не влияет на положение равновесия , но ускоряет наступление этого состояния.

Задание ЕГЭ. Химическое равновесие в системе

смещается в сторону образования продукта реакции при:

  1. повышении давления;
  2. повышении температуры;
  3. понижении давления;
  4. применении катализатора.

Выводы

Скорость химической реакции зависит от:

  • природы реагирующих частиц;
  • концентрации или площади поверхности раздела реагирующих веществ;
  • температуры;
  • наличия катализатора.

Равновесие устанавливается, когда скорость прямой реакции равна скорости обратного процесса. В этом случае равновесная концентрация реагирующих веществ не меняется. Состояние химического равновесия зависит от условий и подчиняется принципу Ле-Шателье.

Скорость химической реакции – это изме­нение концентрации реагирующих веществ в единицу времени.

При гомогенных реакциях пространством реакции обозначается объем реакционного сосуда, а при гетерогенных — по­верхность, на которой протекает реакция. Концентрацию реагиру­ющих веществ обычно выражают в моль/л — количестве молей вещества в 1 литре раствора.

Скорость химической реакции зависит от природы реагирующих веществ, концентрации, температуры, давления, поверхности соприкосновения веществ и ее характера, присутствия катализаторов.


Увеличение концентрации веществ, вступающих в химическое взаимодействие, приводит к увеличению скорости химической реакции. Это происходит потому, что все химические реакции проходят между некоторым количеством реагирующих частицами (атомами, молекулами, ионами). Чем больше этих частичек в объеме реакционного пространства, тем чаще они соударяются и происходит химическое взаимодействие. Химическая реакция может протекать через один или несколько элементарных актов (соударений). На основании уравнения реакции можно записать выражение зависимости скорости реак­ции от концентрации реагирующих веществ. Если в элементарном акте участвует лишь одна молекула (при реакции разложения), зависи­мость будет иметь такой вид:

v = k*[A]

Это уравнение мономолекулярной реакции. Когда в элемен­тарном акте происходит взаимодействие двух разных моле­кул, зависимость имеет вид:

v = k*[A]*[B]

Реакция называется бимолекулярной. В случае соударения трех молекул справедливо выражение:

v = k*[A]*[B]*[C]

Реакция называется тримолекулярной. Обозначения коэффициентов:

v скорость реакции;

[А], [В], [С] — концентрации реагирующих веществ;

k — коэффициент пропорциональности; называется кон­стантой скорости реакции.

Если концентрации реагирующих веществ равны единице (1 моль/л) или их произведение равно единице, то v = k.. Константа скорости зави­сит от природы реагирующих веществ и от температуры. Зависимость скорости простых реакций (т. е. реак­ций, протекающих через один элементарный акт) от кон­центрации описывается законом действующих масс: ско­рость химической реакции прямо пропорциональна произведению концентрации реагирующих веществ, воз­веденных в степень их стехиометрических коэффициен­тов.

Для примера разберем реакцию 2NO + O 2 = 2NO 2 .

В ней v = k* 2 *

В случае, когда уравнение химической реакции не соответствует элементарному акту взаимодействия, а отражает лишь связь между массой вступивших в реакцию и образовавшихся веществ, то степени у концентраций не будут равны коэффициентам, стоящим перед формулами соответствующих веществ в уравне­нии реакции. Для реакции, которая протекает в несколько стадий, скорость реакции оп­ределяется скоростью самой медленной (лимитирующей) стадии.

Такая зависимость скорости реакции от кон­центрации реагирующих веществ справедлива для газов и реакций, проходящих в растворе. Реакции с участием твердых веществ не подчиняются закону действующих масс, так как взаимодействие молекул происходит лишь на поверх­ности раздела фаз. Следовательно, скорость гетерогенной реакции зависит еще и от величины и характера поверхности соприкоснове­ния реагирующих фаз. Чем больше поверхность – тем быстрее будет идти реакция.

Влияние температуры на скорость химической ре­акции

Влияние температуры на скорость химической ре­акции определяется правилом Вант-Гоффа: при повыше­нии температуры на каждые 10 ° C скорость реакции уве­личивается в 2-4 раза. Математически это правило пере­дается следующим уравнением:

v t2 = v t1 * g (t2-t1)/10

где v t1 и v t2 — скорости реакций при тем­пературах t2 и t1; g — температурный коэффициент реак­ции — число, показы­вающее, во сколько раз увеличивается скорость реакции при повышении температуры на каждые 10 ° C. Такая значительная зависимость скорости химической реакции от температуры объясняется тем, что образование новых веществ происходит не при вся­ком столкновении реагирующих молекул. Взаимодействуют только те молекулы (активные молекулы), кото­рые обладают достаточной энергией, чтобы разорвать связи в исходных частицах. Поэтому каждая реакция характеризуется энергетическим барьером. Для его преодо­ления молекуле необходима энергия активации — некоторая из­быточная энергия, которой должна обладать молекула для того, чтобы ее столкновение с другой молекулой привело к образованию нового вещества. С ростом температуры число активных молекул быстро увеличивается, что приводит в резко­му возрастанию скорости реакции по правилу Вант-Гоффа. Энергия активации для каждой конкретной реакции зависит от природы реагирующих веществ.

Теория активных столкновений позволяет объяснить влияние некоторых факторов на скорость химической реакции. Основные положения этой теории:

  • Реакции происходят при столкновении частиц реагентов, которые обладают определённой энергией.
  • Чем больше частиц реагентов, чем ближе они друг к другу, тем больше шансов у них столкнуться и прореагировать.
  • К реакции приводят лишь эффективные соударения, т.е. такие при которых разрушаются или ослабляются «старые связи» и поэтому могут образоваться «новые». Для этого частицы должны обладать достаточной энергией.
  • Минимальный избыток энергии, необходимый для эффективного соударения частиц реагентов, называется энергией активации Еа.
  • Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно

Влияние катализатора

Одно из наиболее эффективных средств воздействия на скорость химических реакций — использование катализаторов. Катализаторы — это вещества, которые изменяют скорость реакции, а сами к концу процесса остаются неизменными по составу и по массе. Иначе говоря, в момент самой реакции катализатор активно участвует в химическом про­цессе, но к концу реакции реагенты изменяют свой химический состав, превращаясь в продукты, а катализатор выделяется в перво­начальном виде. Обычно роль катализатора заключается в увеличении скорости реакции, хотя некоторые катализаторы не ускоряют, а замедляют процесс. Явление ускорения химических реакций благодаря присутствию катализаторов носит название катализа, а замедления — ингибирования.

Некоторые вещества не обладают каталитическим действием, но их добавки резко увеличивают каталитическую способность катализаторов. Такие вещества называются промоторами . Другие вещества (каталитические яды) уменьшают или даже полностью блокируют действие катализаторов, этот процесс называется отравлением катализатора .

Существуют два вида катализа: гомогенный и гетерогенный . При гомогенном катализе реагенты, продукты и катализатор составляют одну фазу (газовую или жидкую). В этом случае отсутствует поверх­ность раздела между катализатором и реагентами.

Особенность гетерогенного катализа состоит в том, что катали­заторы (обычно твердые вещества) находятся в ином фазовом состоя­нии, чем реагенты и продукты реакции. Реакция развивается обычно на поверхности твердого тела.

При гомогенном катализе происходит образование промежуточных продуктов между катализатором и реагирующим веществом в результате реакции с меньшим значением энер­гии активации. При гетерогенном катализе увеличение скорости объясняется адсорбцией реагиру­ющих веществ на по­верхности катализатора. В результате этого их концентрация увеличивается и скорость реакции растет.

Особым случаем катализа является аутокатализ. Смысл его заключается в том, что химический процесс ускоряется одним из про­дуктов реакции.



Задание Реакция протекает по уравнению 2А + В = 4С. Начальная концентрация вещества А 0,15 моль/л, а через 20 секунд – 0,12 моль/л. Вычислите среднюю скорость реакции.
Решение Запишем формулу для вычисления средней скорости химической реакции:

7.1. Гомогенные и гетерогенные реакции

Химические вещества могут находиться в разных агрегатных состояниях, при этом их химические свойства в разных состояниях одинаковы, однако активность отличается (что на прошлой лекции было показано на примере теплового эффекта химической реакции).

Рассмотрим различные комбинации агрегатных состояний, в которых могут находиться два вещества А и Б.

A (г.), Б (г.)

A (тв.), Б (тв.)

A (ж.), Б (тв.)

смешиваются

A(тв.), Б (г.)

A (ж.), Б (г.)

смешиваются

(раствор)

гетерогенная

гетерогенная

гетерогенная

гомогенная

гетерогенная

гетерогенная

гомогенная

Hg(ж.) + HNO3

H2 O + D2 O

Fe + O2

H2 S + H2 SO4

CO + O2

Фазой называется область химической системы, в пределах которой все свойства системы постоянны (одинаковы) или непрерывно меняются от точки к точке. Отдельными фазами являются каждое из твердых веществ, кроме того существуют фазы раствора и газа.

Гомогенной называетсяхимическая система , в которой все вещества находятся в одной фазе (в растворе или в газе). Если фаз несколько, то система называется

гетерогенной.

Соответственно химическая реакция называетсягомогенной , еслиреагенты находятся в одной фазе. Еслиреагенты находятся в разных фазах, тохимическая реакция называетсягетерогенной .

Нетрудно понять, что поскольку для возникновения химической реакции требуется контакт реагентов, то гомогенная реакция происходит одновременно во всем объеме раствора или реакционного сосуда, тогда как гетерогенная реакция происходит на узкой границе между фазами - на поверхности раздела фаз. Таким образом, чисто теоретически гомогенная реакция происходит быстрее, чем гетерогенная.

Таким образом, мы переходим к понятию скорость химической реакции .

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

7.2. Скорость химической реакции

Раздел химии, который изучает скорости и механизмы химических реакций является разделом физической химии и называется химической кинетикой .

Скоростью химической реакции называется изменение количества вещества в единицу времени в единице объема реагирующей системы (для гомогенной реакции) или на единице площади поверхности (для гетерогенной реакции).

Таким образом, если объем

или площадь

поверхности раздела фаз

не изменяются, то выражения для скоростей химических реакций имеют вид:

hom o

Отношение изменения количества вещества к объему системы можно интерпретировать как изменение концентрации данного вещества.

Отметим, что для реагентов в записи выражения для скорости химической реакции ставят знак «минус», так как концентрация реагентов уменьшается, а скорость химической реакции – вообще-то величина положительная.

Дальнейшие умозаключения базируются на простых физических соображениях, которые рассматривают химическую реакцию как следствие взаимодействия нескольких частиц.

Элементарной (или простой) называют химическую реакцию, происходящую в одну стадию. Если стадий несколько, то подобные реакции называют сложными, или составными, или брутто-реакциями.

В 1867 году для описания скорости химической реакции был предложен закон действующих масс : скорость элементарной химической реакции пропорциональная концентрациям реагирующих веществ в степенях стехиометрических коэффициентов.n A +m B P,

A, B – реагенты, P – продукты, n ,m – коэффициенты.

W =k n m

Коэффициент k называется константой скорости химической реакции,

характеризует природу взаимодействующих частиц и не зависит от концентрации частиц.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Величины n иm называютсяпорядком реакции по веществу А и B соответственно, а

их сумма (n +m ) –порядком реакции .

Для элементарных реакций порядок реакции может быть 1, 2 и 3.

Элементарные реакции с порядком 1 называют мономолекулярными, с порядком 2 – бимолекулярными, с порядком 3 – тримолекулярными по числу участвующих молекул. Элементарных реакций выше третьего порядка неизвестно – расчеты показывают, что одновременная встреча четырех молекул в одной точке слишком невероятное событие.

Поскольку сложная реакция состоит из некоторой последовательности элементарных реакций, то её скорость может быть выражена через скорости отдельных стадий реакции. Поэтому для сложных реакций порядок может быть любым , в том числе, дробным или нулевым (нулевой порядок реакции говорит о том, что реакция происходит с постоянной скоростью и не зависит от концентрации реагирующих частицW =k ).

Самую медленную из стадий сложного процесса обычно называют лимитирующей стадией (скоростьлимитирующей стадией).

Представьте себе, что большое количество молекул пошли в бесплатный кинотеатр, но на входе стоит контролер, который проверяет возраст каждой молекулы. Поэтому в двери кинотеатра заходит поток вещества, а в кинозал молекулы проникают по одной, т.е. очень медленно.

Примерами элементарных реакций первого порядка являются процессы термического или радиоактивного распада, соответственно константа скорости k характеризует либо вероятность разрыва химической связи, либо вероятность распада в единицу времени.

Примеров элементарных реакций второго порядка очень много – это наиболее привычный нам способ течения реакций – частица А налетела на частицу B, произошло какое-то превращение и что-то там получилось (обратите внимание, что продукты в теории ни на что не влияют – все внимание уделяется только реагирующим частицам).

Напротив, элементарных реакций третьего порядка довольно мало, так как трём частицам одновременно встретиться удается довольно редко.

В качестве иллюстрации посмотрим предсказательную силу химической кинетики.

Скорость химической реакции. Закон действующих масс. Химическое равновесие.

Кинетическое уравнение первого порядка

(иллюстративный дополнительный материал)

Рассмотрим гомогенную реакцию первого порядка, константа скорости которой равна k , начальная концентрация вещества A равна [A]0 .

По определению скорость гомогенной химической реакции равна

K [ A ]

изменению концентрации в единицу времени. Раз вещество A –

реагент, ставим знак «минус».

Такое уравнение называется дифференциальным (есть

производная)

[ A ]

Для его решения в левую часть переносим величины

концентраций, а в правую – времени.

Если равны производные двух функций, то сами функции

должны отличаться не более, чем на константу.

Для решения данного уравнения берут интеграл левой части (по

концентрации) и правой части (по времени). Чтобы не пугать

ln[ A ] = −kt +C

слушателей, ограничимся ответом.

Значок ln – натуральный логарифм, т.е. число b, такое что

= [ A ] ,e = 2,71828…

ln[ A ]- ln0 = - kt

Константу C находят из начальных условий:

при t = 0 начальная концентрация равна [A]0

[ A ]

Раз логарифм –

это степень числа, используем свойства степеней

[ A ]0

e a− b=

Теперь избавимся от противного логарифма (см. определение

логарифма на 6-7 строчек выше),

для чего возведем число

в степень левой части уравнения и правой части уравнения.

[ A ]

E − kt

Умножим на [A]0

[ A ]0

Кинетическое уравнение первого порядка.

[ A ]= 0 × e − kt

На основании

полученного кинетического уравнения первого

порядка может

рассчитана

концентрация вещества

в любой момент времени

Для целей нашего курса данный вывод носит ознакомительный характер, для того чтобы продемонстрировать Вам применение математического аппарата для расчета хода химической реакции. Следовательно, грамотный химик не может не знать математику. Учите математику!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. График зависимости концентрации реагентов и продуктов от времени может быть качественно изображен следующим образом (на примере необратимой реакции первого порядка)

Факторы, которые влияют на скорость реакции

1. Природа реагирующих веществ

Например, скорость реакции следующих веществ: H2 SO4 , CH3 COOH, H2 S, CH3 OH – с гидроксид-ионом будет различаться в зависимости от прочности связи H-O. Для оценки прочности данной связи можно использовать величину относительного положительного заряда на атоме водорода: чем больше заряд, тем легче будет идти реакция.

2. Температура

Жизненный опыт подсказывает нам, что скорость реакции от температуры зависит и увеличивается с ростом температуры. Например, процесс скисания молока быстрее происходит при комнатной температуре, а не в холодильнике.

Обратимся к математическому выражению закона действующих масс.

W =k n m

Раз левая часть этого выражения (скорость реакции) от температуры зависит, следовательно, правая часть выражения также зависит от температуры. При этом концентрация, разумеется, от температуры не зависит: например, молоко сохраняет свою жирность 2,5% и в холодильнике, и при комнатной температуре. Тогда, как говаривал Шерлок Холмс оставшееся решение и есть верное, каким бы странным оно ни казалось: от температуры зависит константа скорости!

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Зависимость константы скорости реакции от температуры выражается посредством уравнения Аррениуса:

− E a

k = k0 eRT ,

в котором

R = 8,314 Дж·моль-1 ·К-1 – универсальная газовая постоянная,

E a – энергия активации реакции (см. ниже), её условно считают не зависящей от температуры;

k 0 – предэкспоненциальный множитель (т.е. множитель, который стоит перед экспонентойe ), величина которого тоже почти не зависит от температуры и определяется, в первую очередь, порядком реакции.

Так, величина k0 составляет примерно для реакции первого порядка 1013 с-1 , для реакции второго порядка – 10 -10 л·моль-1 ·с-1 ,

для реакции третьего порядка – 10 -33 л2 ·моль-2 ·с-1 . Эти значения запоминать не обязательно.

Точные значения k0 для каждой реакции определяют экспериментально.

Понятие энергии активации становится ясным из следующего рисунка. Фактически энергия активации представляет собой энергию, которой должна обладать реагирующая частица, для того, чтобы реакция произошла.

При этом если мы нагреваем систему, то энергия частиц повышается (пунктирный график), тогда как переходное состояние (≠) остается на прежнем уровне. Разница в энергии между переходным состоянием и реагентами (энергия активации) сокращается, а скорость реакции согласно уравнению Аррениуса возрастает.

Скорость химической реакции. Закон действующих масс. Химическое равновесие. Кроме уравнения Аррениуса, существует уравнение Вант-Гоффа, которое

характеризует зависимость скорости реакции от температуры посредством температурного коэффициента γ:

Температурный коэффициент γ показывает, во сколько раз вырастет скорость химической реакции при изменении температуры на 10o .

Уравнение Вант-Гоффа:

T 2− T 1

W (T 2 )= W (T 1 )× γ10

Обычно коэффициент γ находится в диапазоне от 2 до 4. По этой причине химики часто пользуются приближением, что увеличение температуры на 20o приводит к возрастанию скорости реакции на порядок (т.е. в 10 раз).

Скорость химической реакции

Тема «Скорость химической реакции», пожалуй, наиболее сложная и противоречивая в школьной программе. Это связано со сложностью самой химической кинетики – одного из разделов физической химии. Неоднозначно уже само определение понятия «скорость химической реакции» (см., например, статью Л.С.Гузея в газете «Химия», 2001, № 28,
с. 12). Еще больше проблем возникает при попытке применить закон действующих масс для скорости реакции к любым химическим системам, ведь круг объектов, для которых возможно количественное описание кинетических процессов в рамках школьной программы, очень узок. Хотелось бы особо отметить некорректность использования закона действующих масс для скорости химической реакции при химическом равновесии.
В то же время вообще отказаться от рассмотрения этой темы в школе было бы неверным. Представления о скорости химической реакции очень важны при изучении многих природных и технологических процессов, без них невозможно говорить о катализе и катализаторах, в том числе и о ферментах. Хотя при обсуждении превращений веществ используются в основном качественные представления о скорости химической реакции, введение простейших количественных соотношений все же желательно, особенно для элементарных реакций.
В публикуемой статье достаточно подробно рассматриваются вопросы химической кинетики, которые можно обсуждать на школьных уроках химии. Исключение из курса школьной химии спорных и противоречивых моментов этой темы особенно важно для тех учащихся, кто собирается продолжить свое химическое образование в вузе. Ведь полученные в школе знания нередко вступают в противоречие с научной реальностью.

Химические реакции могут существенно различаться по времени протекания. Смесь водорода и кислорода при комнатной температуре может долгое время оставаться практически без изменений, однако при ударе или поджигании произойдет взрыв. Железная пластина медленно ржавеет, а кусочек белого фосфора самовоспламеняется на воздухе. Важно знать, насколько быстро протекает та или иная реакция, чтобы иметь возможность контролировать ее ход.

Основные понятия

Количественной характеристикой того, насколько быстро протекает данная реакция, является скорость химической реакции, т. е. скорость расходования реагентов или скорость появления продуктов. При этом безразлично, о каком из участвующих в реакции веществе идет речь, поскольку все они связаны между собой через уравнение реакции. По изменению количества одного из веществ можно судить о соответствующих изменениях количеств всех остальных.

Скоростью химической реакции () называют изменение количества вещества реагента или продукта () за единицу времени () в единице объема (V ):

= /(V ).

Скорость реакции в данном случае обычно выражается в моль/(л с).

Приведенное выражение относится к гомогенным химическим реакциям, протекающим в однородной среде, например между газами или в растворе:

2SO 2 + O 2 = 2SO 3 ,

BаСl 2 + Н 2 SO 4 = ВаSО 4 + 2НСl.

Гетерогенные химические реакции идут на поверхности соприкосновения твердого вещества и газа, твердого вещества и жидкости и т.п. К гетерогенным реакциям относятся, например, реакции металлов с кислотами:

Fе + 2НСl = FeСl 2 + Н 2 .

В этом случае скоростью реакции называют изменение количества вещества реагента или продукта () за единицу времени () на единице поверхности (S):

= /(S ).

Скорость гетерогенной реакции выражается в моль/(м 2 с).

Чтобы управлять химическими реакциями, важно не только уметь определять их скорости, но и выяснить, какие условия оказывают на них влияние. Раздел химии, изучающий скорость химических реакций и влияние на нее различных факторов, называется химической кинетикой .

Частота соударений реагирующих частиц

Важнейший фактор, определяющий скорость химической реакции, – концентрация .

При повышении концентрации реагирующих веществ скорость реакции, как правило, возрастает. Для того чтобы вступить в реакцию, две химические частицы должны сблизиться, поэтому скорость реакции зависит от числа столкновений между ними. Увеличение числа частиц в данном объеме приводит к более частым столкновениям и к возрастанию скорости реакции.

Для гомогенных реакций повышение концентрации одного или нескольких реагирующих веществ приведет к увеличению скорости реакции. При понижении концентрации наблюдается противоположный эффект. Концентрация веществ в растворе может быть изменена путем добавления или удаления из сферы реакции реагирующих веществ или растворителя. В газах концентрация одного из веществ может быть увеличена путем введения дополнительного количества этого вещества в реакционную смесь. Концентрации всех газообразных веществ можно увеличить одновременно, уменьшая объем, занимаемый смесью. При этом скорость реакции возрастет. Увеличение объема приводит к обратному результату.

Скорость гетерогенных реакций зависит от площади поверхности соприкосновения веществ , т.е. от степени измельчения веществ, полноты смешивания реагентов, а также от состояния кристаллических структур твердых тел. Любые нарушения в кристаллической структуре вызывают увеличение реакционной способности твердых тел, т.к. для разрушения прочной кристаллической структуры требуется дополнительная энергия.

Рассмотрим горение древесины. Целое полено горит на воздухе сравнительно медленно. Если увеличить поверхность соприкосновения дерева с воздухом, расколов полено на щепки, скорость горения увеличится. Вместе с тем древесина горит в чистом кислороде значительно быстрее, чем на воздухе, который содержит лишь около 20% кислорода.

Для протекания химической реакции должно произойти столкновение частиц – атомов, молекул или ионов. В результате столкновений происходит перегруппировка атомов и возникают новые химические связи, что приводит к образованию новых веществ. Вероятность столкновения двух частиц достаточно высока, вероятность одновременного столкновения трех частиц существенно меньше. Одновременное столкновение четырех частиц чрезвычайно маловероятно. Поэтому большинство реакций протекает в несколько стадий, на каждой из которых происходит взаимодействие не более трех частиц.

Реакция окисления бромоводорода протекает с заметной скоростью при 400–600 °С:

4НВr + O 2 = 2Н 2 О + 2Вr 2 .

В соответствии с уравнением реакции одновременно должно столкнуться пять молекул. Однако вероятность такого события практически равна нулю. Более того, экспериментальные исследования показали, что повышение концентрации – либо кислорода, либо бромоводорода – увеличивает скорость реакции в одно и то же число раз. И это при том, что на каждую молекулу кислорода расходуется четыре молекулы бромоводорода.

Детальное рассмотрение данного процесса показывает, что он протекает в несколько стадий:

1) НBr + О 2 = НООВr (медленная реакция);

2) НООВr + НВr = 2НОВr (быстрая реакция);

3) НОВr + НВr = Н 2 О + Вr 2 (быстрая реакция).

Приведенные реакции, так называемые элементарные реакции , отражают механизм реакции окисления бромоводорода кислородом. Важно отметить, что в каждой из промежуточных реакций участвует только по две молекулы. Сложение первых двух уравнений и удвоенного третьего дает суммарное уравнение реакции. Общая же скорость реакции определяется наиболее медленной промежуточной реакцией, в которой взаимодействуют одна молекула бромоводорода и одна молекула кислорода.

Скорость элементарных реакций прямо пропорциональна произведению молярных концентраций с (с – это количество вещества в единице объема, с = /V ) реагентов, взятых в степенях, равных их стехиометрическим коэффициентам (закон действующих масс для скорости химической реакции). Это справедливо лишь для уравнений реакций, отражающих механизмы реальных химических процессов, когда стехиометрические коэффициенты перед формулами реагентов соответствуют числу взаимодействующих частиц.

По числу взаимодействующих в реакции молекул различают реакции мономолекулярные, бимолекулярные и тримолекулярные. Например, диссоциация молекулярного йода на атомы: I 2 = 2I – мономолекулярная реакция.

Взаимодействие йода с водородом: I 2 + Н 2 = 2HI – бимолекулярная реакция. Закон действующих масс для химических реакций разной молекулярности записывается по-разному.

Мономолекулярные реакции:

А = В + С,

= kc A ,

где k – константа скорости реакции.

Бимолекулярные реакции:

= kc A c В.

Тримолекулярные реакции:

= kc 2 A c В.

Энергия активации

Столкновение химических частиц приводит к химическому взаимодействию лишь в том случае, если сталкивающиеся частицы обладают энергией, превышающей некоторую определенную величину. Рассмотрим взаимодействие газообразных веществ, состоящих из молекул А 2 и В 2:

А 2 + В 2 = 2АВ.

В ходе химической реакции происходит перегруппировка атомов, сопровождающаяся разрывом химических связей в исходных веществах и образованием связей в продуктах реакции. При столкновении реагирующих молекул сначала образуется так называемый активированный комплекс , в котором происходит перераспределение электронной плотности, и лишь потом получается конечный продукт реакции:

Энергию, необходимую для перехода веществ в состояние активированного комплекса, называют энергией активации .

Активность химических веществ проявляется в низкой энергии активации реакций с их участием. Чем ниже энергия активации, тем выше скорость реакции. Например, в реакциях между катионами и анионами энергия активации очень мала, поэтому такие реакции протекают почти мгновенно. Если энергия активации велика, то очень малая часть соударений приводит к образованию новых веществ. Так, скорость реакции между водородом и кислородом при комнатной температуре практически равна нулю.

Итак, на скорость реакции оказывает влияние природа реагирующих веществ . Рассмотрим для примера реакции металлов с кислотами. Если опустить в пробирки с разбавленной серной кислотой одинаковые кусочки меди, цинка, магния и железа, можно увидеть, что интенсивность выделения пузырьков газообразного водорода, характеризующая скорость протекания реакции, для этих металлов существенно различается. В пробирке с магнием наблюдается бурное выделение водорода, в пробирке с цинком пузырьки газа выделяются несколько спокойнее. Еще медленнее протекает реакция в пробирке с железом (рис.). Медь вообще не вступает в реакцию с разбавленной серной кислотой. Таким образом, скорость реакции зависит от активности металла.

При замене серной кислоты (сильной кислоты) на уксусную (слабую кислоту) скорость реакции во всех случаях существенно замедляется. Можно сделать вывод, что на скорость реакции металла с кислотой влияет природа обоих реагентов – как металла, так и кислоты.

Повышение температуры приводит к увеличению кинетической энергии химических частиц, т.е. увеличивает число частиц, имеющих энергию выше энергии активации. При повышении температуры число столкновений частиц также увеличивается, что в некоторой степени увеличивает скорость реакции. Однако повышение эффективности столкновений за счет увеличения кинетической энергии оказывает большее влияние на скорость реакции, чем увеличение числа столкновений.

При повышении температуры на десять градусов скорость увеличивается в число раз, равное температурному коэффициенту скорости :

= T +10 /T .

При повышении температуры от T до T "
отношение скоростей реакций T " и T равно
температурному коэффициенту скорости в степени (T " – T )/10:

T " /T = (T "–T )/10.

Для многих гомогенных реакций температурный коэффициент скорости равен 24 (правило Вант-Гоффа). Зависимость скорости реакции от температуры можно проследить на примере взаимодействия оксида меди(II) с разбавленной серной кислотой. При комнатной температуре реакция протекает очень медленно. При нагревании реакционная смесь быстро окрашивается в голубой цвет за счет образования сульфата меди(II):

СuО + Н 2 SО 4 = СuSO 4 + Н 2 О.

Катализаторы и ингибиторы

Многие реакции можно ускорить или замедлить путем введения некоторых веществ. Добавляемые вещества не участвуют в реакции и не расходуются в ходе ее протекания, но оказывают существенное влияние на скорость реакции. Эти вещества изменяют механизм реакции (в том числе состав активированного комплекса) и понижают энергию активации, что обеспечивает ускорение химических реакций. Вещества – ускорители реакций называют катализаторами , а само явление такого ускорения реакции – катализом .

Многие реакции в отсутствие катализаторов протекают очень медленно или не протекают совсем. Одной из таких реакций является разложение пероксида водорода:

2Н 2 О 2 = 2Н 2 О + О 2 .

Если опустить в сосуд с водным раствором пероксида водорода кусочек твердого диоксида марганца, то начнется бурное выделение кислорода. После удаления диоксида марганца реакция практически прекращается. Путем взвешивания нетрудно убедиться, что диоксид марганца в данном процессе не расходуется – он лишь катализирует реакцию.

В зависимости от того, в одинаковых или различных агрегатных состояниях находится катализатор и реагирующие вещества, различают гомогенный и гетерогенный катализ.

При гомогенном катализе катализатор может ускорить реакцию путем образования промежуточных веществ за счет взаимодействия с одним из исходных реагентов. Например:

При гетерогенном катализе химическая реакция обычно протекает на поверхности катализатора:

Катализаторы широко распространены в природе. Практически все превращения веществ в живых организмах протекают с участием органических катализаторов – ферментов.

Катализаторы используют в химическом производстве для ускорения тех или иных процессов. Кроме них применяют также вещества, замедляющие химические реакции, – ингибиторы . С помощью ингибиторов, в частности, защищают металлы от коррозии.

Факторы, влияющие на скорость химической реакции

Увеличивают скорость Уменьшают скорость
Наличие химически активных реагентов Наличие химически неактивных реагентов
Повышение концентрации реагентов Понижение концентрации реагентов
Увеличение поверхности твердых и жидких реагентов Уменьшение поверхности твердых и жидких реагентов
Повышение температуры Понижение температуры
Присутствие катализатора Присутствие ингибитора

ЗАДАНИЯ

1. Дайте определение скорости химической реакции. Напишите выражение кинетического закона действующих масс для следующих реакций:

а) 2С (тв.) + О 2 (г.) = 2СО (г.);

б) 2НI (г.) = Н 2 (г.) + I 2 (г.).

2. От чего зависит скорость химической реакции? Приведите математическое выражение зависимости скорости химической реакции от температуры.

3. Укажите, как влияет на скорость реакции (при постоянном объеме):

а) увеличение концентрации реагентов;

б) измельчение твердого реагента;
в) понижение температуры;
г) введение катализатора;
д) уменьшение концентрации реагентов;
е) повышение температуры;
ж) введение ингибитора;
з) уменьшение концентрации продуктов.

4. Рассчитайте скорость химической реакции

СО (г.) + Н 2 О (г.) = СО 2 (г.) + Н 2 (г.)

в сосуде емкостью 1 л, если через 1 мин 30 с после ее начала количество вещества водорода было 0,32 моль, а через 2 мин 10 с стало 0,44 моль. Как повлияет на скорость реакции увеличение концентрации СО?

5. В результате одной реакции за определенный промежуток времени образовалось 6,4 г йодоводорода, а в другой реакции в тех же условиях – 6,4 г диоксида серы. Сравните скорости этих реакций. Как изменятся скорости этих реакций при повышении температуры?

6. Определите скорость реакции

СО (г.) + Сl 2 (г.) = СОCl 2 (г.),

если через 20 с после начала реакции исходное количество вещества оксида углерода(II) уменьшилось c 6 моль в 3 раза (объем реактора равен 100 л). Как изменится скорость реакции, если вместо хлора использовать менее активный бром? Как изменится скорость реакции при введении
а) катализатора; б) ингибитора?

7. В каком случае реакция

СaО (тв.) + СО 2 (г.) = СaCO 3 (тв.)

протекает быстрее: при использовании крупных кусков или порошка оксида кальция? Рассчитайте:
а) количество вещества; б) массу карбоната кальция, образовавшегося за 10 с, если скорость реакции составляет 0,1 моль/(л с), объем реактора равен 1 л.

8. Взаимодействие образца магния с хлороводородной кислотой НСl позволяет получить 0,02 моль хлорида магния через 30 с после начала реакции. Определите, за какое время можно получить 0,06 моль хлорида магния.

Е) от 70 до 40 °С скорость реакции уменьшилась в 8 раз;
ж) от 60 до 40 °С скорость реакции уменьшилась в 6,25 раза;
з) от 40 до 10 °С скорость реакции уменьшилась в 27 раз.

11. Владелец автомашины покрасил ее новой краской, а затем обнаружил, что согласно инструкции она должна сохнуть 3 ч при 105 °С. За какое время высохнет краска при 25 °С, если температурный коэффициент реакции полимеризации, лежащей в основе этого процесса, равен: а) 2; б) 3; в) 4?

ОТВЕТЫ НА ЗАДАНИЯ

1. а) = kc (О 2); б) = kc (HI) 2 .

2. T +10 = T .

3. Скорость реакции увеличивается в случаях а, б, г, е; уменьшается – в, д, ж; не изменяется – з.

4. 0,003 моль/(л с). При увеличении концентрации СО скорость реакции возрастает.

5. Скорость первой реакции в 2 раза ниже.

6. 0,002 моль/(л с).

7. а) 1 моль; б) 100 г.

9. Увеличатся в 2 раза скорости реакций д, ж, з; в 4 раза – а, б, е; в 8 раз – в, г.

10. Температурный коэффициент:

2 для реакций б, е; = 2,5 – в, ж; = 3 – д, з; = 3,5 – а, г.

а) 768 ч (32 сут, т. е. более 1 месяца);
б) 19 683 ч (820 сут, т. е. более 2 лет);
в) 196 608 ч (8192 сут, т. е. 22 года).